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Kun Duan

Conditional Random Field Models for Structured Visual Object Recognition

Image classification, object detection, and object description are classic problems

in computer vision that have gained renewed attention due to the rapidly-growing

collections of online imagery. Online images provide a free and nearly infinite source of

data for training and testing vision algorithms, but the scale and heterogeneity of real-

world photo collections require new scalable techniques that can handle substantial

noise. In all of these recognition problems, structure is a recurring theme, albeit in

di↵erent forms; geometric structure among the parts of an object, regularity of parts

across di↵erent object instances, or patterns among images and image metadata of a

collection. These may seem to be dramatically di↵erent types of (weak) information,

but the conditional random field (CRF) is a powerful framework that can handle all of

them. In this thesis, we propose and design novel CRF models to solve three distinct

types of challenging object recognition problems, each incorporating di↵erent types

of structured information while explicitly modeling uncertainty. We first study the

monocular human pose estimation problem, introducing a fully-supervised multi-layer

CRF to model the human body. A key challenge here is the huge label space, and we

show how to achieve state-of-the art performance e�ciently using dual decomposition.

We then study fine-grained object recognition where the goal is to discriminate among
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very similar categories (e.g. di↵erent bird species, or di↵erent vehicle models). We

propose a CRF to automatically discover discriminative attributes of objects, using

human interaction to infer attribute names. Finally, we study loosely-supervised

clustering and classification of web images having noisy, sparse, multimodal metadata

(GPS, timestamps, etc.), by generalizing the traditional K-means algorithm into a

latent CRF. For all three problems, we conduct extensive experiments to compare

our proposed approaches with the state-of-the-art on challenging benchmark datasets.

We show that carefully designed and trained CRF models are able to achieve better

recognition performance than competitive baselines. The major contribution of this

thesis is to show how to design and train CRF models for di↵erent structured object

recognition tasks at di↵erent levels of supervision.
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CHAPTER 1

Introduction

1.1 Overview of Thesis

The goal of computer vision is to develop theories and methods to build computational

systems that can perceive and process visual information. There are many examples of

computer vision techniques applied in various applications, including industrial robots

for controlling processes, autonomous vehicles, visual surveillance for detecting events,

medical image analysis, and computer-human interactions, among many others. The

most classical and fundamental task beneath these applications is object recognition.

Broadly speaking, object recognition tasks include classifying images, detecting

object instances and describing semantic visual properties of object categories. In

image classification, a collection of static images is given, then visual features are

extracted and predictions are made for each image individually (e.g. bag of visual

words approach) [22,37,38]; while these images are usually assumed to be independent

and identically distributed (i.i.d.), there are relations among the images that could

help to label them jointly [84,144]. In object detection, traditional approaches usually

build a “template” for the object category of interest, and look for the closest match

on a new image [10,51]. However, it is di�cult for a simple model such as a template

1



Figure 1.1: Illustration of the three key tasks in object recognition. Top row: Image

classification and categorization on Caltech-256 dataset [47]. Middle row: Object

detection for PASCAL image categories [35]. Bottom row: Object description using

visual attributes [36].

to capture object appearance variations, since many objects are deformable in nature.

For example, the human body can be considered as a combination of di↵erent parts

(head, trunk, limbs, etc) with geometric constraints among them, which generate

thousands of possible human poses [100, 138]. Even relatively rigid objects are still

structured in some way or another; e.g. cars are decomposed into windows, wheels,

head lights, etc. Thus, part-based methods for object detection become a natural

solution based on these assumptions [20, 40].

Other recent work focuses on object description, where the intuition is that detect-

ing certain object categories directly is di�cult, but modeling their visual attributes

is significantly easier. Visual attributes (e.g. hair and eye colors for face recognition,

etc.) are discriminative and semantically meaningful, and describe the intermediate

level features of object instances. These attributes are usually structured under ge-

ometry or co-occurrence constraints (e.g. co-occurence of hair colors and eye colors

2



of human beings has been studied [122]), thus it is possible to utilize this structured

information to model visual attributes [32, 136].

For all the above recognition problems, how to explore and correctly model the

complex structures is key to improving state-of-art recognition performance. Our long

term goal is to devise algorithms that can handle object recognition to both detect

and describe object instances, and work for visual data at a large scale (Figure 1.1).

Here we show how to design novel conditional random fields (CRF) [70] to model

structured information in these object recognition problems. CRFs are graphical

models that provide a highly flexible way for modeling structures: many objects (e.g.

human body, vehicles, animals, furnitures, etc) are decomposable into lower-level el-

ements (defined as parts), and the geometry or kinematic constraints among these

parts make them able to form an entire object model as a graph structure. Rela-

tions among images can also be captured by CRFs through modeling their pairwise

similarities based on distance metrics calculated on di↵erent modality channels.

1.1.1 Three Motivating Problems

In this thesis, we will present our work on developing CRF models for three ap-

plications: 1) estimating human poses in static images, 2) discovering localized vi-

sual attributes and 3) organizing web images with multi-modal features. In all these

problems, structure is a recurring theme, either at classification time (part-based tech-

niques that encode geometry structure) or training time (weakly supervised learning

of visual attributes). The structure can take on di↵erent forms, e.g. sometimes it is

the structure among parts of the same object, sometimes it is the structure among

images of a collection. These seem like dramatically di↵erent problems at first sight,

3



but conditional random fields are a framework that can handle all of them.

1.1.2 Learning Paradigms

Computer vision researchers used to hand-design algorithms based on intuition, but

much better results have been achieved from learning models automatically using

machine learning techniques. Then instead of having to hand-craft algorithms and

heuristics, one instead needs to collect representative training data. There is typi-

cally substantial e↵ort still involved in doing this, so di↵erent supervision levels have

emerged depending on how much information is available (and how much human

labor and money people are willing to invest to collect it).

Fully supervised methods rely on manually annotated training exemplars for each

category of interest. For example, these annotations can be bounding boxes over

object instances and their key points (for an object detection task), or a category

name for each training image (for an image classification task). In this case, discrim-

inative properties of certain object categories can be learned with a high recognition

performance on the test data. Example applications include face recognition, im-

age retrieval, etc. However fully annotated training data are expensive to obtain in

practice, and they might also su↵er from the curse of dataset bias [60].

Weakly supervised methods try to learn with less training information, and intro-

duce latent variables. Unlike observed variables whose training labels can be collected

in a less expensive way, latent variables are not observed in the training process, and

try to model more information given the same amount of supervisions on the training

exemplars. However, these methods require e↵ective inference over the latent label

space; thus iterative methods are usually taken to estimate the model parameters,

4



where in each iteration the confidence of latent labels for each training exemplar

is updated. For example, part-based object detectors can be trained if there are no

bounding box annotations but the class label of each training image is given [21]. The

training process can be slower than the fully supervised case, but it keeps comparable

performance against supervised methods, and requires much less annotations.

In the case of large scale learning, e.g . looking at images at a web scale, training

labels are often di�cult to obtain. Thus unsupervised or loosely-supervised (a special

case of weakly-supervised learning, i.e. very small scale training data, with noise and

missing labels) methods have to be used in order to learn the statistical model for

object recognition. Interesting applications include large scale image classification,

large scale image tag estimation, automatic photo album organization, etc. Figure 1.2

compares the three di↵erent learning paradigms.

1.1.3 Challenges

While CRFs are a flexible and convenient framework (which we outline in the next

section and discuss in detail in Chapter 2), posing object recognition problems in

terms of CRFs is non-trivial work, both from theoretical and implementation points of

view. In our proposed framework, di↵erent graphical models are designed so that the

learning and inference complexity can be scalable for the application of interest, while

obtaining state-of-art recognition performance. We summarize the key challenges that

we want to address in current object recognition tasks:

• How to design conditional random field models to capture and utilize complex

structures in object recognition problems.

5



Figure 1.2: Di↵erent learning paradigms for the vehicle detection problem. Top: fully

supervised, middle: weakly supervised, bottom: unsupervised.

6



• How to model latent information and use it to improve object recognition per-

formance.

• How to model structured information for images at a large scale.

• How to train conditional random field models under di↵erent levels of supervi-

sion.

1.2 Conditional Random Fields

A Conditional random field (CRF) [70] is a form of discriminative undirected proba-

bilistic graphical model that encodes relationships between di↵erent variables. Some

of these variables can be directly observed whereas others cannot be, and the struc-

ture encoded in the CRF helps to estimate the unobserved ones given the observed

ones. We briefly summarize CRFs in this section, and then explain them in much

more detail in Chapter 2.

Let G = (V,E) be an undirected graph, where V is the set of nodes in the

graph, and E is the set of edges. Let n = |V | denote the number of nodes in the

graph. Define X as the set of input random variables, Y = {y
v

}
v2V as the set of

output random variables, where V = X [ Y and each y
v

(v 2 V ) takes a value from

a range of possible discrete labels. In a conditional random field, we assume each

random variable y
v

obeys the Markov property when conditioned on X, such that the

conditional probability distribution of y
v

given its adjacent nodes is independent of

the rest of the nodes in the graph. That is, if G is such a graphical model that

P (y
v

|X, y
w

, w 6= v) = p(y
v

|X, y
w

, w 2 N(v))
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where N(v) is the set of adjacent nodes of v, then (Y,X) is a conditional random

field (CRF). In object recognition problems, the observations X are often the image

data themselves, or extracted visual features; and Y correspond to the outputs of the

vision system, e.g. possible locations of pedestrians in the image to be detected, or

possible category labels of the image to be classified.

The structure of graph G may be a chain, a tree, a grid, or any arbitrary structure.

Two nodes are connected to each other if they are constrained by the assumptions of

the specific problem to be solved.

Given a graphical model, the most fundamental (yet highly non-trivial) task is to

compute the marginal distribution of one or a few node variables in Y . This task is

usually referred to as inference. In other words, the inference task for a CRF is to

find a best label for each node, such that it maximizes the conditional probability

P (Y |X). A second fundamental task is training a CRF model, which requires a

collection of annotated training exemplars whose output labels Y are observed in

the training process. The structure of a CRF model is usually assumed to have a

parametric form. Then an optimization problem (e.g. maximize the likelihood of a

conditional random field on all training instances) is solved to obtain the parameters.

A brief example may be helpful to illustrate the use of CRFs in practice. Named

entity recognition [86] in natural language processing applications which is the task of

recognizing and classifying all proper nouns into pre-defined classes such as persons,

locations, organizations and others. For example, in “Bill bought a cat in Texas,” we

would like to assign “person” to “Bill,” “animal” to “cat,” and “location” to “Texas.”

Stop words like “a” or “in” are removed in the preprocessing step. In this case, a

chain-like CRF can be used since the words are sequential, and it is reasonable to
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Figure 1.3: Graphical structure of a CRF chain model for named-entity recognition

task.

assume that words are related to their immediate neighbors. Word neighbors are

constrained by grammatical rules, punctuation context or co-occurrence relations.

The probability of a word being assigned with a specific class label is defined using

word level features (e.g . language or genre specific cues) and dictionary look-ups. A

graphical representation of such a CRF is shown in Figure 1.3, where X corresponds

to observed words, and Y corresponds to a collection of name variables representing

the semantic labels assigned to each word.

For more sophisticated problems, a CRF can be defined as a tree graph or even a

loopy graph, instead of a chain model; it can also be defined using high-order cliques,

which are subgraphs with more than two nodes.

The inference on a conditional random field is exact if it leads to a global optimal

solution, otherwise the inference is approximate. For chain-like or tree-like CRF

models where there are no loops, exact inference can be performed in polynomial

time. We will describe the details of di↵erent inference algorithms in the thesis.

We also discuss the details of learning conditional random field using discriminative
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methods.

CRFs can also contain latent variables. Latent variables are not observed in the

CRF training process. They are used to model useful information (which are not

annotated in the training data) in the problem structure. For example, in a vehicle

detection task, a commonly provided annotation is a bounding box for the car in each

training image. We can treat this as a fully supervised task, i.e. training a vehicle

template using bounding box annotations. However, the problem structure is better

defined if we assume a vehicle is composed of a set of rigid parts. The state-of-art

deformable part-based models [39] consider di↵erent components of a vehicle as “parts”

(wheels, car front, head lights, windows, car back, etc). Their approach learns the

appearance for each part of the object and models the geometric constraints among

these parts by treating them as latent variables, given only bounding box annotations

in the training process. These graphical models with latent variables are called latent

conditional random fields (latent CRFs). We will describe the details of latent CRF

in Section 2.5.

1.3 Three Motivating Problems

In the subsequent sections, we showcase how to use CRF models to solve di↵erent

object recognition problems. First, a multi-layer hierarchical CRF model is developed

for modeling human pose structures, and a fully supervised approach is applied to

detect the human body and estimate its pose on a new image. Second, a latent CRF

model is formulated for modeling localized attributes, where these visual attributes

are modeled as latent variables; then an iterative process for discovering local at-

tributes is proposed. Finally, we extend the traditional K-means algorithm using a
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latent CRF model, then describe how to use a loosely supervised approach to learn

the multi-modal concepts at a large scale, and also demonstrate our approach on an

unsupervised clustering task. Our choice of applications also correspond to di↵er-

ent learning paradigms: supervised learning for pose estimation, weakly supervised

learning for local attribute discovery, and loosely supervised / unsupervised learning

for multimodal modeling.

1.3.1 Conditional Random Field for Human Pose

Estimation

Detecting humans and identifying body pose are key problems in understanding nat-

ural images, since people are the focus of many (if not most) consumer photographs.

Pose recognition is a challenging problem due not only to the usual complications

of object recognition—cluttered backgrounds, scale changes, illumination variations,

etc.—but also to the highly flexible nature of the human body. To deal with this flex-

ibility, deformable part-based models [39, 40] have emerged as a dominant approach

in recognizing people and other articulated objects [19, 73, 124, 137, 138, 147]. These

part-based models decompose an object into a set of parts, each of which is repre-

sented with a local appearance model, and a geometric model that constrains relative

configurations of the parts. Recognition is then cast as an inference problem on a

conditional random field (CRF) model, in which the parts are represented by vertices

and the constraints between parts are represented as edges.

Many of these part-based models assume a tree structure [39, 40, 138], capturing

the kinematic constraints between parts of the body—e.g. that the lower arm is

connected to the upper arm, which is connected to the torso, etc. Such tree structures
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Figure 1.4: Illustration of our multi-layer composite part-based model.

allow exact inference to be performed e�ciently on the underlying CRF model via

dynamic programming. However, the tree structure makes conditional independence

assumptions between unconnected parts, which can lead to pose estimates that obey

kinematic constraints but are still not sensible; for example, a single image region

might be recognized as two di↵erent body parts, or a pose might be estimated that

violates constraints of gravity and human balance.

A variety of approaches have been proposed for dealing with these problems, in-

cluding introducing a few cycles into a tree-structured graphical model [137, 147],

adding common factor variables [73], or using a fully-connected graphical model [124]

to capture more spatial constraints among the parts. Although e↵ective, these ap-

proaches introduce cycles into the graphical model which generally makes exact in-

ference intractable, leading to approximate solutions and increased computational

complexity. How to model richer spatial constraints that still permit e�cient infer-

ence is an important open question.

In order to address these problems from a di↵erent perspective, we propose a novel

conditional random field model. Instead of adding cycles to the original model, we

build a multi-level model consisting of multiple tree-structured models with di↵erent
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resolution scales and numbers of parts, allowing di↵erent degrees of structural flexi-

bility at di↵erent levels, and connect these models through hierarchical decomposition

links between body parts in adjacent levels. A visualization of our model with three

layers is shown in Figure 1.4 (left). Even though the composite model is a loopy

graph, it can be naturally decomposed into tree-structured sub-problems within each

level and the cross-model constraint sub-problem across levels (which is also tree-

structured as shown in Figure 1.4 (right)). These tree-structured sub-problems are

amenable to exact inference, and thus joint inference on the composite model can be

performed via dual-decomposition [12].

The main idea behind dual-decomposition is to decompose the original optimiza-

tion problem into smaller and easily solvable subproblems, then calculate a solution

for the original problem by combining the solutions from these subproblems. At

detection time, dual-decomposition methods modify a vector of dual variables [67]

iteratively, and perform individual inference over the decomposable subgraphs. In

our problem, the inference for each sub-task is separable from others, and can be

done in polynomial time through dynamic programming; thus we can update the

dual variables in parallel. This makes the dual-decomposition step very e�cient in

practice.

We train these models jointly, and show that the composite models outperform

state-of-the-art techniques on two challenging pose recognition datasets. We believe

these composite models provide a principled way to trade o↵ the competing goals

of model expressiveness and ease of inference, by “stitching” together multiple tree-

structured models into a richer composite model while keeping the complexity of joint

inference in check. Our preliminary work has been published [29].
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1.3.2 Conditional Random Field for Discovering

Localized Attributes

Human pose is so flexible that strong supervision at the body key points level has

to be used to achieve reasonable performance. Also, it is not very expensive to label

key points of a human body (e.g. head, shoulder, arm and leg joints, hands, ankles,

etc) since these locations are well-known to ordinary people; just a few clicks will

complete the annotation task for an image. However, there exist many other problems

where obtaining detailed annotations is expensive. Here we consider modeling visual

attributes, which are intermediate-level features that are both machine-detectable

and semantically meaningful. For many objects, the definition of visual attributes

usually requires strong domain knowledge, thus the labor cost for annotating these

images is much higher. We propose to use latent conditional random field model to

discover visual attribute candidates, and combine a human-in-the-loop process that

intelligently interacts with human subjects through iterations to select candidates

that are both machine-detectable and semantically meaningful.

Most image classification and object recognition approaches learn statistical mod-

els of low-level visual features like SIFT [78] and HOG [23]. While these approaches

give state-of-the-art results in many settings, such low-level features and statistical

classification models are meaningless to humans, thus limiting the ability of humans

to understand object models or to easily contribute domain knowledge to recognition

systems. Recent work has introduced visual attributes (e.g. [11,17,36,42,52,69,141])

that help to expose the details of an object model in a way that is accessible to

humans: in bird species recognition, for example, they can explicitly model that
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a cardinal has a “red-orange beak,” “red body,” “sharp crown,” “black face,” etc.

Attributes are particularly attractive for fine-grained domains like animal species

where the categories are closely related, so that a common attribute vocabulary ex-

ists across categories. Attributes also enable innovative applications like zero-shot

learning [71,91] and image-to-text generation [36, 91].

So where do these attributes come from? Most existing work uses hand-generated

sets of attributes (e.g . [17, 69]), but creating these vocabularies is time-consuming

and often requires a domain expert (e.g . an ornithologist familiar with the salient

parts of a bird). Moreover, while these attributes are guaranteed to be human-

understandable (which su�ces for human-in-the-loop classification applications [17]),

they may not be machine-detectable and hence may not work well in automatic

systems. Some recent work has discovered image-level attributes (e.g . “outdoors” or

“urban”) automatically [90], but such global attributes are of limited use for fine-

grained object classification in which subtle di↵erences between object appearances

are important.

Discovering local attributes (like those illustrated in Figure 1.5) is significantly

harder because a local attribute might correspond to features at di↵erent unknown

positions and scales across images. Automatic techniques to do this have generally

either found attributes that are discriminative or that are meaningful to humans,

but not both. Finding discriminative local regions (e.g. [141]) works well for attain-

ing good image classification performance, but the regions may not be semantically

meaningful and thus not useful for applications like zero-shot learning and automatic

image description. On the other hand, mining text can produce attribute vocabu-

laries that are meaningful (e.g . [11]) but not necessarily complete, discriminative, or

15



red stripes on wings orange stripes on wings

white belly yellow belly

Figure 1.5: Sample local and semantically meaningful attributes automatically dis-

covered by our approach. The names of the attributes are provided by the user-in-

the-loop.

detectable.

In this thesis, we propose to discover local attributes for biological objects (e.g.

birds, butterflies) and man-made objects (e.g. vehicles) for recognition tasks. These

two kinds of objects have significant di↵erences that lead to di↵erent learning paradigms.

Vehicles are much more rigid than animals, and vehicle photos are often taken from

relatively fixed viewpoint angles. Thus for vehicle recognition, such viewpoint infor-

mation is very useful to build correspondence between image regions from two photos

taken under di↵erent viewpoint angles. We use a detection-based method to generate

region candidates for attribute discovery on vehicle images. The detection results of

the object parts give us a probability distribution of the locations of possible region

candidates. We also learn a viewpoint-dependent multiple instance SVMs where the

attributes discovered on di↵erent images are constrained by geometric relations.

Biological objects are highly deformable, and it is di�cult to train a part-based

16



object model for such categories. Thus, we use a segmentation-based method to

generate region candidates. We use a hierarchical segmentation approach, which

generates a rich set of region candidates, and preserves their geometric properties

as much as possible. We design an interactive system that discovers discriminative

local attributes that are both machine-detectable and human-understandable from

an image dataset annotated with fine-grained category labels and object bounding

boxes. At each iteration in the discovery process, we identify two categories that are

most confusable given the attributes that have been discovered so far; we call these

two categories an active split. We use a latent CRF model to automatically discover

candidate local attributes that separate these two classes. For these candidates, we use

a recommender system to identify those that are likely to be semantically meaningful

to a human, and then present them to a human user to collect attribute names.

Candidates for which the user can give a name are added to the pool of attributes,

while unnamed ones are ignored. In either case, the recommender system’s model

of semantic meaningfulness is updated using the user’s response. Once the discovery

process has built a vocabulary of local attributes, these attributes are detected in new

images and used for classification.

To the best of our knowledge, ours is the first system to discover vocabularies of lo-

cal attributes that are both machine-detectable and human-understandable, and that

yield good discriminative power on fine-grained recognition tasks (i.e. classification,

image-to-text annotation, and object detection). We published preliminary work on

discovering localized attributes in [31, 32]. We demonstrate our approach through

systematic experiments on two challenging biological datasets: Caltech-UCSD Birds-

200-2011 [130] and Leeds Butterflies [134], and two vehicle image datasets: Stanford
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car dataset [115] and INRIA vehicle dataset [68]. We find on these datasets that

our discovered local attributes outperform those generated by human experts and by

other strong baselines, on fine-grained image classification tasks.

1.3.3 Conditional Random Field for Large-scale Multi-Modal Recogni-

tion

The above two applications using conditional random fields are based on small scale,

hand-collected image datasets. However in the real world, online photo-sharing has

become very popular, which generates huge collections of images on sites like Flickr,

Picasa, and Instagram. As these datasets grow ever larger, a key challenge is how to

organize them to allow for e�cient navigation and browsing. For instance, we may

want to discover the structure of photo collections by clustering images into coherent

groups with similar objects, scenes, events, etc. in an automatic or semi-automatic

way.

While image clustering has been studied extensively (e.g. [9,140,146] among many

others), photo collections on modern photo-sharing sites introduce new opportunities

and challenges. In addition to the images themselves, photos on these sites often

include rich metadata that provide additional cues to the semantic content of the im-

ages, including text tags, timestamps, camera EXIF data, GPS coordinates, captions,

and comments from other users. This metadata allows us to find connections between

photos that are not obviously similar: a photo of the crowd at a candidate’s political

rally is clearly related to a photo of his or her campaign logo, but these photos exhibit

almost no visual similarity. In such cases, similarities in the non-visual metadata may

help: image tags and captions often contain useful keywords related to the content,
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activities, and context of the scene, while GPS coordinates and timestamps can be

used to find photos taken nearby in space and time.

Of course, metadata alone is not enough: two random photos tagged canon d50

are probably not related, while photos tagged with identical GPS and timestamps

may be unrelated if taken on di↵erent floors of a large building. Moreover, metadata

is typically not well constrained, and thus often missing, incomplete, ambiguous,

or erroneous. For instance, some photos include detailed text tags, while others

are tagged with unhelpful or noisy labels or are not tagged at all; even the most

fastidious of photographers cannot list all possible tags that are relevant to an image.

GPS coordinates are only collected by select devices like smartphones and are often

hidden due to privacy concerns, so geo-tags typically appear on a small subset of

images.

In this thesis, we present an approach for clustering large datasets with multi-

modal, incomplete, and noisy features, and apply it to clustering social photo collec-

tions. Our method can be used in a fully unsupervised setting, or can use labeled

training data if available, in contrast to supervised methods like SVMs that require

significantly more training data. Our method is designed for cases where obtaining

large labeled datasets is not feasible, but annotating a small amount of training data

is still feasible. For example, in a large scale photo collection with millions of images,

if the categories of interest are known in advance, one can manually annotate a few

hundred instances, and apply our approach using this loosely-supervised information

for organizing the rest.

As in traditional clustering (like K-means), we wish to assign each instance to a

cluster, but the cluster identities (e.g . centroids) are themselves unknown and must
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Uniform K-d vector  Non-uniform K-d vector  Pairwise constraints 

NO TAG 

NO TAG 

skyscrapers 
paris 
defense 

barcelona 
sky 
architecture 
Spain 
skyscrapers 

sunset 
reflection 
river 
newbrunswick 
st. john river 

trees 
nature 
bonsai 
fengshui 

Figure 1.6: Illustration of the latent Conditional Random Field model for two feature

types. The primary features here are text tags, which are encoded as unary potentials,

while visual features are the constraints (encoded in the pairwise potentials). Missing

text tags yield uniform unary potentials.

also be inferred. We pose this problem using a Latent Conditional Random Field, in

which each node in the graph corresponds to an image, and our goal is to mark each

node with a cluster label. We pick one type of feature to be the primary feature and

use it to define the CRF’s unary potentials, which are functions of the distances from

an image’s primary feature to each latent cluster center. The other feature channels

are considered to be constraints and appear as pairwise potentials in the CRF. These

constraints tie together images with similar secondary features, encouraging them to

be assigned to the same cluster. Incomplete, noisy, and heterogeneous features can

thus be naturally incorporated into this model through these soft constraints. To

perform clustering, we alternately solve for cluster assignments and cluster centers in

a manner similar to K-means and EM, except that the E-step is much more involved,

requiring inference on a CRF.
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A challenge in clustering with noisy, multi-modal features is how to define sensible

distance metrics for the heterogeneous feature types, and how to weight them relative

to one another. We address this problem by learning the distance and potential

functions on a small amount of labeled training data we obtain from each category.

In particular, we use Information Theoretic Metric Learning (ITML) [25] to learn the

parameters of the distance metrics for constraint features, and use structural SVMs

with the same training exemplars to learn the potential functions of the CRF. Our

approach can still work for unsupervised cases, when obtaining labeled images is not

feasible or no prior knowledge about the categories of interest is known; in this case,

we can use a standard metric like L2 distance, or use a distance functions trained on

a di↵erent but similar dataset.

Finally, we evaluate our approach on three datasets from Flickr, with labeled

ground truth and di↵erent types of features including visual, text, and GPS tags, and

compare against strong baseline methods. We also test on a larger unlabeled image

dataset to show how we can organize photo collections around coherent events and

activities in a completely unsupervised manner.

In summary, we propose a general loosely supervised clustering framework for

multi-modal data with missing features. We also apply metric learning and formulate

a structural SVM problem for learning the structure of the latent CRF. In addition,

we show that the approach can be used for unsupervised clustering on large-scale

online image datasets. A preliminary version of this multimodal image modeling

work has been published in [30].
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1.4 Summary

In this thesis, we will study the important role of structured information in object

recognition tasks. We choose three relevant applications (human pose estimation,

local attribute discovery, and multi-modal data learning at web scale), and showcase

how to develop di↵erent types of conditional random fields to model these structures.

These applications are representative of many structured object recognition problems,

and require di↵erent levels of supervisions (fully supervised, weakly supervised, or

unsupervised). We perform systematic evaluations of the proposed coherent CRF

framework, and compare against strong baseline methods on challenging datasets.

Thesis Statement. CRFs provide a unifying framework to help understanding and

utilizing the implicit structure in a wide range of recognition problems, and yield

state of the art performance on benchmark datasets.
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CHAPTER 2

Conditional Random Fields

2.1 Overview

A graphical model [18, 54, 59] is a probabilistic framework where a graph is used to

represent the dependency structures among di↵erent variables. Combining the use

of probability theory and graph theory, graphical models become a principled and

e↵ective approach for modeling uncertainty. They allow us to represent a distribution

over a collection of random variables, using the product of potential functions that

are defined on small subsets of random variables. A graphical model can be either a

directed graph (i.e. Bayesian Network) if the edges in the graph have directions, or

an undirected graph (i.e. Markov random field) if no edges have directions.

Bayesian networks or belief networks must be both directed and acyclic, and model

causal relations. Applications of Bayesian networks include e.g . medical diagnosis

systems, criminal risk analysis, insurance policy modeling, etc. Markov random fields

(MRFs), on the other hand, are a set of random variables having the Markov property

described by an undirected graph. Unlike a Bayesian network, an MRF can have cycles

in the graph, and thus can be used to model more complex relational structures.

A Markov random field models the joint probability distribution p(x,y), where y
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denotes the unobserved random variables whose value we want to predict, and the

observed random variables x whose values are known in the graphical model. How-

ever, modeling the joint distribution requires the calculation of the prior term p(x),

which contains complex dependencies when rich features are used in the relational

structure. In this case, modeling these dependencies incurs intractable computations,

but ignoring or simplifying them (e.g . assuming uniform or Gaussian distribution)

can lead to inaccurate explanation of the model structure.

One solution to this problem is to model the conditional distribution p(y|x) di-

rectly, which is su�cient in many situations. Conditional random fields (CRFs) were

proposed [70] as a variant of Markov random fields to solve this problem. Markov

random field and conditional random field are examples of generative models and

discriminative models in a probabilistic framework, respectively. Generative models

make assumptions on the prior probability distribution p(x) of the training data,

and need to explicitly specify the joint probability distribution p(y,x). The training

instances are assumed to be sampled from the joint probability distribution. Thus

generative models describe a full probabilistic model of all variables, and are able to

“hallucinate” the values of any variable in the model.

Generative approaches work best when we have prior knowledge of the given prob-

lem, and are able to handle small scale training data since they rely strongly on the

prior probability distribution. When we have su�cient training data (so that mod-

eling the prior term is not necessary), or when we do not have any prior knowledge,

we can use discriminative models. In a probabilistic framework, discriminative mod-

els directly model the conditional probability p(y|x). They often have much better

performance than generative models in classification or regression tasks since a full
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joint probabilistic distribution is not necessary in these cases.

In this part of the thesis, we will review the definitions of conditional random

field models (Section 2.2), and discuss the common learning and inference algorithms

(Section 2.3 and Section 2.4). We will also describe a variant of conditional random

fields by adding latent, unobserved information in the training data (Section 2.5).

2.2 Model

Let G = (V,E) be an undirected graph, where V is the set of nodes in the graph, and

E is the set of edges each of which connects two nodes. Define X as the set of input

variables whose values are observed in the graph, and Y as the set of output variables

that are not observed whose values needs to be estimated. We have V = X [ Y , and

use x, y to denote the values assigned to variables X, Y respectively.

To make the context clear, we only consider the case when each variable in V

takes a value from a range of possible discrete labels, although they can be either

continuous or discrete in a more general case.

Probabilistic interpretation. Given the set of all maximal cliques (i.e. maximal

subgraphs of G that are fully-connected) A of G, the conditional probability distri-

bution of a CRF can be written as

p(y|x) = 1

Z(x)

Y

A2A
 

A

(x
A

,y
A

) (2.1)

where  
A

: A ! R+ is called a potential function or compatibility function, and A

is a maximal clique in G. Z is a normalization factor (also called partition function)
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Figure 2.1: A grid-structured conditional random field. x represents the (observed)

input variables, and y represents the (unobserved) output variables.

depending on the observed values of input variables x, and is defined as:

Z(x) =
X

y

Y

A2A
 

A

(x
A

,y
A

)

We also assume the conditional distribution over the graph G is an exponential

family [3], thus we require each potential function  
A

to have the form

 
A

= exp

(
X

k

w
Ak
f
Ak
(xA,yA)

)
(2.2)

where w
A

is a real-valued parameter vector, and {f
Ak
} is a set of feature functions

defined on the potential  
A

.

Energy function interpretation. The above probabilistic interpretation of condi-

tional random field models has a natural connection with another form of interpreta-

tion, i.e. energy function interpretation.

Mathematically, one can take the negative logarithm of the left hand side and right

hand side of equation 2.1, and the problem of maximizing the conditional probability
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becomes an energy minimization problem. In practice, we usually model structures

using pairwise constraints, since inference is easier in this case and the model param-

eters are easy to learn. For example, in computer vision problems we often see CRFs

with maximal cliques of size 2. In this case, we can write down the energy function

for a grid structured CRF model (Figure 2.1) as

E(y|x) =
X

i

D(y
i

|x) +
X

i,j

V (y
i

, y
j

|x) (2.3)

where we call D the unary potential, and V the pairwise potential. Occasionally we

also use high-order cliques (i.e. number of nodes involved in a potential function � 3),

and there are special types of high-order clique potentials (e.g . P n Potts Model [62],

Cardinality Potentials [119]) that are useful in a few applications.

Probabilistic models need to be normalized properly, and in many cases require

evaluating intractable integrals over the space of all possible variable configurations.

Energy functions have no such normalization requirement, thus providing more flex-

ibility in designing the architecture of the underlying graphical model.

Applications in computer vision. Many computer vision tasks can be naturally

described by conditional random fields. We now summarize a few basic low level

computer vision problems with structures that can be captured by using conditional

random field models.

• Image Denoising. Given an image I with (possibly noisy) observed pixel values,

find I 0 so each pixel in I 0 has the corrected value [7]. We consider a smoothing

term V (y
i

, y
j

) that encourage neighboring pixels i and j to have the same pixel

value, and a data term D(y
i

|x
i

) that places a penalty if y
i

is di↵erent with the

observation x
i

.
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• Image Segmentation. Given an image I, group the pixels so that each pixel

is assigned a label indicating which region or object it belongs to [89], e.g .

labeling each pixel with 0 (background) or 1 (foreground). We define the data

term D(y
i

|x
i

) that encodes an appearance model (e.g . a GMM model trained

on color features). We also place a cost V (y
i

, y
j

) for neighboring pixels i and j

if a) their labels are di↵erent and b) the di↵erence between their pixel values is

less than some threshold.

• Stereo Matching. Given a image pair of a scene, find the disparity value of

each pixel (i.e. the distance that the pixel ”moved” across images, which is

proportional to the depth of the scene point imaged by the pixel) [116]. These

disparities are assumed to be smooth, thus we add pairwise constraints for

neighboring pixels, and place a cost V (y
i

, y
j

) (either constant or linear with

the disparity di↵erence) if their disparity values are di↵erent. The data term

D(y
i

|x
i

) is defined using the matching cost of a small neighborhood around

pixel i.

In the above examples, the structures are image grids, and the models are intuitive

to understand. In next chapters, we will describe more di�cult scenarios where

conditional random field models are used to model more complex structures.

2.3 CRF Parameter Estimation

In order for CRFs to be applied to problems, one needs to design the potential

functions. Typically this is done by assuming they have some parametric form and

then we need to estimate the parameters. We discuss three parameter estimation
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approaches for conditional random field models, i.e. maximum likelihood learning,

maximum a posterior learning and structured SVM learning. We briefly review the

first two methods and then focus on the structured support vector machine, as it

plays an important role in later chapters.

Maximum likelihood learning. Given i.i.d. training data D = {(x(n),y(n))},

maximum likelihood (ML) learning involves maximizing the following objective func-

tion:

`(w) =
NY

n=1

p(y(n)|x(n);w)

where N is the number of instances in the training data. For a CRF in Equation 2.1,

we can re-write the above objective function using conditional log likelihood as:

`(w) =
NX

n=1

log(p(y(n)|x(n);w))

=
NX

n=1

 
X

A2A
log 

A

(x(n)
A

,y(n)
A

)� logZ(x(n);w)
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And then from Equation 2.2,

`(w) =
NX

n=1
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X
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w
Ak
f
Ak
(x(n)

A

,y(n)
A

)� logZ(x(n);w)
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In general, `(w) cannot be solved in closed form. But we can compute the partial

derivatives of `(w) and apply numerical optimization to maximize `(w).

Maximum a posterior learning. Maximum a posterior (MAP) learning simply

adds a regularization term (e.g . `2 norm) on w in the above ML learning objective

function. The posterior here comes from Bayesian view and the regularization term

is like the log prior term:

`(w) = kwk2 + C ·
NX

n=1

 
X

A2A

X

k

w
Ak
f
Ak
(x(n)

A

,y(n)
A

)� logZ(x(n);w)

!
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where C is a parameter (usually tuned on a validation set) that controls how much

regularization is enforced in the optimization objective. MAP learning can also be

interpreted as regularized empirical risk minimization:

`(w) = kwk2 + C ·
NX

n=1

�(ŷ(n),y(n))

where we define ŷ(n) = argmax
y

p(y|x(n);w), and define the loss function as:

�(ŷ(n),y(n)) =
X

A2A

X

k

w
Ak
f
Ak
(x(n)

A

,y(n)
A

)� logZ(x(n);w) (2.4)

Note that ML and MAP learning both require computing the partition function

Z(x), thus these two methods are feasible only when the graph structure is a tree or

chain, where the partition function can be computed e�ciently and exactly (e.g . using

sum-product algorithm [14] or other inference algorithms discussed in Chapter 2.4).

Structured SVM learning. Structured support vector machines (structured SVMs) [125]

are a max-margin approach where features are extracted jointly from the input space

X and output space Y . Let (x(1),y(1)), (x(2),y(2)) . . . (x(n),y(n)) 2 X ⇥ Y be the

training data instances. In traditional binary or multi-class classification problems,

Y consists of orderless integer class labels. Structured SVMs are a generalization

where each output label y 2 Y is a structure, e.g . a sequence, string, tree or even

an arbitrary graph. In the linear case of structured SVMs, we wish to learn a linear

discriminant function f : X ⇥ Y ! R such that

f(x(n),y) = wT�(x(n),y), 8y 2 Y

where �(x,y) defines a mapping between input/output pair (x,y) and the corre-

sponding features. The prediction ŷ(n) under f is given by

ŷ(n) = argmax
y

f(x(n),y) (2.5)
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where w is the parameter vector to be learned from the training data. Letting y(n)

be the ground truth output label for training instance (x(n),y(n)) 2 X ⇥ Y , we can

define the margin as the gap between the scores f(x(n),y(n)) (using the ground truth

output label) and f(x(n), ŷ(n)) (using the predicted output label under f).

We use loss functions to measure the disagreement between the prediction and

the ground truth. For example, the loss function in Equation 2.4 is called a log loss.

From a risk minimization point of view, MAP learning minimizes the log loss to learn

the CRF parameters, and it requires the computation of Z(x). In structured SVM,

we assume that there exists a task-dependent loss function �(y(n),y), such that

�(y(n),y) > 0 8y 6= y(n) and �(y(n),y(n)) = 0

The definition of �(y(n),y) can be very flexible compared with the standard zero-

one loss function for classification task, and it quantifies how much the prediction

ŷ(n) is di↵erent from the ground truth output label y(n). For example, in natural

language parsing tasks, the F1 score [56] can be used as the loss function to measure

the correctness of predictions ŷ(n) given ground truth output labels y(n). In object

detection tasks, we can use intersection-over-union (IOU) scores computed on the

detection and ground truth bounding boxes as the loss function [15]. The choice of

a particular loss function usually depends on the task, and is often related to the

evaluation metric. However, such �(y(n),y) is usually non-convex, which makes it

di�cult to incorporate in an optimization framework. Thus we consider minimizing
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a piece-wise linear convex upper bound of the loss function:

�(y(n), ŷ(n)) = �(y(n), ŷ(n)) +wT�(x(n),y(n))�wT�(x(n),y(n))

 �(y(n), ŷ(n)) +wT�(x(n), ŷ(n))�wT�(x(n),y(n)) (via Eq. 2.5)

 max
y

�
�(y(n),y) +wT�(x(n),y)

��wT�(x(n),y(n)) (2.6)

Equation 2.6 introduces the margin rescaling method, and the structured SVM

can be formulated as the convex optimization problem below:

min
w
kwk2 + C

NX

n=1

✓
max

y

�
�(y(n),y) +wT�(x(n),y)

��wT�(x(n),y(n))

◆
, C > 0(2.7)

The above optimization problem can be solved by cutting-plane [55] or stochastic

gradient descent [81,102,120] methods. Note that the number of possible assignments

for y 2 Y is often exponential. Thus a common approach is to consider only a subset

or working set of constraints at a time. In order to minimize the size of the working

set, the training of a structured SVM is iterative, considering the subset of most

violated constraints. Finding these constraints involves an important step called loss-

augmented inference:

ỹ(n) = argmax
y

�
�(y(n),y) +wT�(x(n),y)

�
(2.8)

For fixed w that is estimated in the previous iteration, a new training instance

(x(n), ỹ(n)) is added to the current working set of constraints according to Equa-

tion 2.8. Then the estimation of w is updated, and the iteration stops when w does

not change.
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2.4 CRF Inference

Given the observations x and the model parameters w, there are two common tasks

in CRF inference problems: (1) compute the marginal distribution of the unknown

variable(s) in y; (2) estimate the most likely configuration for each unknown vari-

able in y. Note that any CRF can be solved exactly using sum product for (1) and

max product for (2). But the running time is exponential in size of the maximum

clique. For chains and trees, dynamic programming (i.e. forward-backward for (1)

and Viterbi algorithm [96] for (2)) are e�cient. Here we review several major inference

algorithms for conditional random field models with general graph structures. Infer-

ence on arbitrary graphs is NP hard, and these following approaches are approximate

algorithms.

Iterated conditional modes. Iterated conditional modes (ICM) [13] is a deter-

ministic algorithm that uses a “greedy” strategy to sequentially maximize the local

conditional probabilities and find an approximate solution. It starts with an initial

estimate of the output labels, and then for each unknown variable y
s

in the graphical

model, the label that gives largest increase of p(y|x) is chosen for y
s

. The process is

repeated until convergence. ICM results are quite sensitive to initialization, and the

algorithm can be extremely ine�cient.

Monte Carlo methods. Monte Carlo methods [14] are a series of sampling-based

approaches for approximate inference in graphical models. The main idea of Monte

Carlo methods is to express the given task as an expectation of a random variable

g(µ) with respect to some distribution P . Then we can estimate the expected value
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from T samples generated by P as follows:

ĝ =
1

T

TX

t=1

g(µ(t))

where µ(1), µ(2), . . . µ(T ) are T i.i.d. samples generated by P . Monte Carlo estimates

are guaranteed to converge by the law of large numbers, and the variance of the

estimator can be reduced by increasing the number of samples.

Basic sampling-based approaches [14] include rejection sampling, likelihood weight-

ing, and importance sampling, etc.; while in the case of high dimensional spaces, peo-

ple usually useMarkov Chain Monte Carlo (MCMC) methods [14,87] (e.g .Metropolis-

Hasting, Gibbs sampling).

Graph-cuts methods. In the case of two labels, exact inference can be done using

graph-cuts on submodular potential functions. For multi-label cases, Boykov et al . [16]

propose two graph-cuts algorithm for approximate inference, i.e. swap move and

expansion move, which involve solving min-cut / max-flow problems on specially

constructed graphs. These algorithms are able to solve energy minimization problems

with only unary and pairwise potentials e�ciently. For high-order clique potentials,

there exist e�cient energy minimization methods [53, 64, 98] if the graph potential

functions are still submodular.

The swap move algorithm randomly initializes a labeling f for y in the graph.

Then in each iteration, a swap move operation is performed for each label pair h↵, �i

and a new f 0 is obtained. If the overall energy decreases, we update f = f 0, and this

process is repeated until no energy drop happens. The algorithm produces the final

labeling f⇤ as the inference results.

Expansion move is similarly defined for each label ↵ such that the set of nodes
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assigned with ↵ increases, and a new labeling f 0 is obtained if this operation leads to

lower energy than original labeling f . It finds a local minimum where no expansion

move for any label can give another labeling with lower energy. An important property

of the expansion move algorithm is that it produces a solution with a provable factor

of the global minimum of the energy function [127]. In both swap move and expansion

move algorithms, evaluating the swap move or expansion move involves inference on

a 2-label subproblem.

Message passing methods. Message passing algorithms iteratively update the

states of the unknown variables in y by sending messages from a variable y
s

to each

of its neighbors y
t

in the graph. Intuitively, the message represents the belief or

confidence of which state y
s

thinks y
t

should be. Combining the confidence from its

neighbors, y
t

updates its own local belief and sends new messages to its neighbors.

The process is iterative and stops when the overall energy of the graphical model does

not change.

The most common message passing algorithm is called belief propagation (BP).

BP is exact if the underlying graph structure is a tree, and is only approximate if

the graph has loops. It has a sum-product version (used for estimating marginals)

and a max-product version (used for estimate state configurations with maximum

probability).

Let’s take the CRF structure defined by Equation 2.3 as an example. In max-

product BP, the algorithm iteratively computes a message M
s!t

from y
s

to y
t

, where

M
s!t

is a vector of |Y
t

| dimensions, and Y
t

is the set of possible labels for the unknown

variable y
t

. When passing a message from y
s

to y
t

at iteration t, it uses the following
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message update rule to compute the message:

M(t)
s!t

(y
t

) = min
ys

0

@D(y
s

) + V (y
s

, y
t

) +
X

u2N (s)\t
M(t)

u!s

(y
s

)

1

A

Note that the name “max-product” comes from the probabilistic formulation. We

typically use the log formulation, which is sometimes called min-sum. BP keeps pass-

ing messages between any two neighboring nodes in some order until convergence (e.g .

when all messages do not change). For tree structures, BP is applied by computing

the messages in a forward pass and then a backward pass. For general graph struc-

tures, there exist di↵erent choices for scheduling the messages (e.g . random ordering,

static schedule [34], dynamic schedule [117]) since BP is not guaranteed to converge

if the graph has loops. These di↵erent schedules not just a↵ect the running time of

BP, but also a↵ect its convergence behavior.

As mentioned, belief propagation is not guaranteed to converge on loopy graph

structures, and since it often finds a local minimum, it’s not clear how much gap exists

between the CRF energy using the inference results and the global minimum. Tree-

Reweighted Message Passing [67] (TRW), on the other hand, decomposes a general

graph structure into multiple trees, and proves an upper bound for the original graph

energy using these multiple tree structures via linear program relaxation. The infer-

ence on the original graph structure is called the master problem, and the inference

on each tree graph is called as a slave problem. The constraints encode the equality

relation between duplicated variables in di↵erent slave problems, and are combined

all together to iteratively find the solution of the master problem.

To summarize, we have briefly introduced several common inference algorithms for

conditional random fields. Among these algorithms, graph-cuts and message passing
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algorithms (e.g . belief propagation) won the most academic popularity and have been

applied to a number of problems recently. For highly connected graph structures,

graph-cuts outperforms BP and TRW in terms of lower error rates and lower energy,

and TRW is able to obtain lower energy than BP [66]. The challenges of TRW

includes how to decompose the graph into di↵erent trees, and how to schedule the

message updates. In addition, the convergence speed of TRW decreases as the graph

connectivity increase. All these problems are open questions to solve, and thus the

performance of TRW could be improved.

2.5 CRF with Latent Variables

In many structured prediction tasks, latent variables capture useful information that

are not observed in the training process [95,142]. For example, in object detection [39],

locations of the components or parts of an object are very useful labels, but they

are usually not available in the training stage. Object instances are labeled only

with bounding boxes, since obtaining detailed part-level annotations from human

users is usually time-consuming and tedious. Another example is protein function

prediction [97], where we are given genomic sequences in the training data, and the

goal of the algorithm is to generate a protein function name for each new genomic

sequence. Here the protein structure is crucial and useful structured information that

are unobserved for training instances.

CRFs with latent variables (or latent CRFs) are important tools to describe struc-

tures in these applications while capturing the latent information. We use X to rep-

resent the label space of input variables. We also assume a label space Y for the

output variables y, and a label space H for the latent variables h. The inference task
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for structured models with latent variables involves finding labels that best explain

the latent variables and assigning output labels to test instances at the same time.

In other words, a desired form of the prediction rule is:

(ŷ(n), ĥ(n)) = argmax
y⇥h2Y⇥H

f(x(n),y,h) (2.9)

where ŷ(n) is the predicted output label for x(n), and ĥ(n) is the inferred latent label.

To learn such a prediction rule from training data, we assume there is a loss func-

tion �(y(n), ŷ(n), ĥ(n)) associated with the ground truth output label y(n), predicted

output label ŷ(n) and the inferred latent label ĥ(n) defined on the training instances.

Again, the definition of the loss function depends on the particular task. Sometimes

the performance evaluation is only relevant with y(n) and ŷ(n), and is independent of

ĥ(n) (e.g . object detection). To simplify the problem, the loss function in these cases

can be written as �(y(n), ŷ(n)).

We train the model using the latent structural SVM [142]. Similar to structural

SVMs, we find an upper bound of the loss function:

�(y(n), ŷ(n), ĥ(n))  max
y⇥h2Y⇥H

h
wT�(x(n), ŷ(n), ĥ(n)) +�(y(n), ŷ(n), ĥ(n))

i

�max
h2H

wT�(x(n),y(n),h)

(2.10)

We use the right hand side as the surrogate loss function, and the latent structural

SVM can be formulated as:

min
w
kwk2 + C

NX

n=1

✓
max

y⇥h2Y⇥H

h
wT�(x(n), ŷ(n), ĥ(n)) +�(y(n), ŷ(n), ĥ(n))

i◆

�C
NX

n=1

✓
max
h2H

wT�(x(n),y(n),h)

◆ (2.11)

where C > 0 is a parameter that controls how much regularization is enforced on w.
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The training procedure of a latent structural SVM is still iterative, similar to

structural SVM. Each iteration involves two inference operations: (1) loss-augmented

inference on y ⇥ h, and (2) inference on the latent variable h given the ground truth

output label y(n). We can apply the inference algorithms in Section 2.4 for solving

these problems. However, if the structure in y is a general graph, then approximate

inference algorithms without convergence guarantees will harm the SVM performance,

since the constraint found in (1) is not necessarily the most di�cult one. An inter-

esting work [110] by Schwing et al . proposes an e�cient message passing algorithm

for structured loss minimization with latent variables to solve this problem. Their

method is guaranteed to converge, and generalizes two di↵erent loss minimizations

(MAP learning and SVM learning) for CRF into a single framework.

2.6 Applications of CRFs to Computer Vision

Besides the low level computer vision applications, CRFs can also be used in a variety

of high level computer tasks, e.g . image scene understanding, object detection, object

tracking, and action recognition, etc.

The goal of image scene understanding is to detect and recognize all objects and

stu↵s in an image, as well as estimate the scene structure and type. Shotton et al . [112]

proposes TextonBoost for total scene understanding, where a CRF is built to capture

local image evidence at pixel level and the interactions between neighboring pixels

jointly in the same framework. In the object detection task, a CRF is often used to

represent an object as a set of parts decomposed from the object, plus the geometric

relations among the parts [21, 39, 40]. These models are able to combine evidence

from each part detector as well as the constraints among the parts, and estimate the
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object’s location until having collected all information. CRFs can also be used to

capture temporal relations in the object tracking task via a chain-like structure that

put constraints on corresponding parts from adjacent video frames [108, 121]. In the

action recognition task, Lan et al . [72] proposes a novel CRF model that captures

group activity, individual actions, and their interactions in the single framework, and

proposes a discriminative learning method to learn all parameters together.

In this thesis, we apply CRFs in three di↵erent object recognition problems. We

first design a novel hierarchical CRF that models the kinematic structure of a human

body to estimate human poses in 2D static images. Then we use a latent multi-

layer CRF to model local image regions (i.e. what we call local attributes) that are

both discriminative and semantically meaningful. Lastly, we apply a latent CRF to

generalize the classical K-means clustering framework for multimodal image model-

ing. Although di↵erent in terms of specific applications, their structured properties

allow conditional random fields to be a useful common framework for solving these

problems.

2.7 Summary

We have reviewed the definition of conditional random fields, and have discussed

major learning and inference algorithms on such graphical models. We focus on

using structural SVMs and its variant (e.g . latent structural SVM) to train model

parameters, and using message passing algorithms for solving inference problem in

CRFs with general graph structures. The advantages of conditional random fields

and their variants include that (1) they have flexible model structures, thus can be

applied to many structured prediction problems; and (2) they directly model the
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conditional probability, and thus have strong discriminative power. We also briefly

introduced several high level computer vision tasks where CRFs play an important

role on capturing the structured information.

In the following chapters, we will discuss the details of using CRFs to solve dif-

ferent object recognition problems at di↵erent supervision levels (full supervision for

pose estimation, semi-supervision for attribute discovery, and loose supervision / no

supervision for multimodal image modeling).
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CHAPTER 3

Multi-layer Models for Human Pose Estimation

In this chapter, we introduce our novel multi-layer CRF models for human pose

estimation problems. We begin in Section 3.1 by discussing related existing work,

and then describe our baseline model in Section 3.2, which is very similar to [138].

We show how to generalize this to a multiscale model in Section 3.2.1, and then discuss

how to perform inference e�ciently using dual-decomposition in Section 3.2.2. We

then describe how to jointly learn the parameters of the model from labeled training

data in Section 3.2.3.

3.1 Related Work

Given a static image of human bodies, the human pose estimation task not only

requires estimating a bounding box over the person, but also requires locating the

limbs and body parts. We now review important literature related to human pose

estimation.

3.1.1 Pictorial Structures

Felzenszwalb and Huttenlocher [40] introduced part-based tree-structured deformable

models to the problem of human pose recognition, and called these models “pictorial

42



structures.” In a part-based model, an object is represented using a collection of

“parts” with some model of the spatial relationship between them. Each part has

an appearance model capturing local appearance, while the spatial models typically

prefer some configurations but allow deformation due to human flexibility and image

transformations. In the case of human pose recognition, the spatial model encodes

the kinematic constraints, e.g . the arms are connected to shoulders, etc. Pictorial

structures can naturally be modeled in a probabilistic graphical model framework, in

which there is a latent variable for each part denoting that individual part’s pose, and

there are connections between some of the part variables that encode constraints on

relative part position. Each variable also observes the image data. Pose recognition

can then be considered as an inference problem, where the goal is typically to find the

most-likely values for the latent pose variables given the image data. Felzenszwalb

and Huttenlocher [40] used 4-d pose variables that parameterize part pose as 2-d

position, orientation, and scale (foreshortening), and encode the pairwise configura-

tion priors as normal distributions. They show that exact inference on tree-structured

graphical models can be performed e�ciently via dynamic programming and distance

transforms, requiring only O(ph) time, where p is the number of parts in the model

and h is the number of possible pose configurations for each part. They used very

simple part appearance models, essentially looking for rectangular blobs in binary

segmentations produced by background subtraction, but later work built on their

technique to create state-of-the-art pose recognition systems.

For instance, Ramanan et al . [100] used the same framework but improved the

part appearance models and adopted an iterative inference approach. An edge-based

deformable model is first applied on the image to obtain a soft (and noisy) estimate of
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body part locations, then a region-based model is used to look for body parts (torso,

legs, arms, etc.) based on learned “part specific” appearance models. The result-

ing soft estimates from the region-based model are further updated in an iterative

process as new region-based models are repeatedly built with better and better part

appearance models. Their later work [99] extended this to tracking pose across time

in video, where the appearance models become customized to a particular person (e.g.

based on clothing color). Andriluka et al . [5] achieved significantly better results by

learning appearance models in a discriminative Adaboost-based framework. The ap-

pearance representation is based on dense shape context descriptors; the kinematic

pose prior is modeled as a tree structure, and is learned separately on a multi-view

and multi-articulation dataset.

More recent work has explored various strategies for enhancing the same basic

part-based framework, and we borrow several of these innovations in our proposed

approach. We discuss three specific innovations in three sections: hierarchical models,

multi-scale feature representations, and mixture models.

3.1.2 Hierarchical Models

There have been various techniques for relaxing the part independence assumptions

have been proposed (e.g . [73,124]). Particularly relevant to our work are approaches

using hierarchical models, such as [147] and [137]. Zhu et al . [147] proposed a Max

Margin AND/OR graph for parsing human body into parts. The model is a multi-

level mixture of Markov Random Fields where each node represents a human body

part at a certain level in the hierarchy. However the appearance models are defined

on sub-parts of body segments, but image segmentation is not always accurate so
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the results are not always reliable. Wang et al . [137] proposed a hierarchical human

parsing model based on the notion of “hierarchical poselets”, i.e. multi-scale body

parts with various sizes. The body parts are defined in a hierarchy at di↵erent scales,

and are able to cover human poses at various levels of granularity. Our proposed

composite models are also hierarchical, but di↵er in the structure of the hierarchy.

In our ensemble, each submodel is a separate and complete tree-structured model of

human pose, as opposed to simply being “larger” parts as in [147] and [137]. This

distinction is crucial since this unique graphical structure allows the use of principled

and e�cient inference based on dual-decomposition, while reusing existing algorithms

developed for tree-structured models.

3.1.3 Multi-scale Models

Recent work in pose recognition has shown that capturing visual features at mul-

tiple image scales is important. Sapp et al . [107] use cascaded models at di↵erent

resolutions for estimating articulated human poses. However the major benefit is to

speed up inference, rather than to improve the estimation accuracy. Park et al . [92]

use multi-resolution models to detect objects at di↵erent scales. They introduce a

binary variable for each object to encode two states for the object size, corresponding

to visual features at two scales (coarse scale and fine scale). At detection time, the

binary variable is jointly inferred with multi-resolution detector output (i.e. object

locations). Yang et al . [138] incorporate visual cues at multiple resolutions by build-

ing Histogram-of-Gradients (HoG) feature pyramids, a technique which we also use

here.
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3.1.4 Mixture Models

To accurately model the highly flexible human form, mixture models for both ap-

pearance and geometry have been proposed. Singh et al . [113] use a linear weighted

combination of heterogeneous part detectors, fusing evidence from di↵erent feature

types. A branch-and-bound approach is used at test time to make inference on the

graphical model faster. Wang et al . [135] use mixtures of tree models to capture

richer spatial constraints and explicitly model part occlusions at the same resolution

level. A boosting procedure is used to combine di↵erent tree structures when inference

needs to be done on test images. However, the design of the structures for di↵erent

tree models is hand-crafted, and it is not clear whether a tree model is stronger or

weaker than another. Thus, how to select the best set of tree structures is a di�cult

and unsolved problem.

Johnson et al . [57] cluster human poses and partition the space of human poses

into a mixture of components, then build mixtures of pictorial structure models using

these clusters. The appearance models are “pose specific” and capture the correlation

between part appearances. Yang et al . [138] introduce mixture models for each human

body part. Specifically, their model assigns a latent “type” variable to each part,

allowing parts to select between several appearance models, and they jointly learn

the parameters in a discriminative structured learning framework. We use a similar

approach based on latent part types, but in a framework featuring hierarchical, multi-

scale models.
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3.1.5 Dual Decomposition

In this thesis, we apply an inference technique called dual decomposition to the prob-

lem of pose recognition. Dual decomposition, also called Lagrangian relaxation, has

been shown to be a useful tool for solving optimization problems with discrete vari-

ables. It decomposes the original optimization objective into small, independent, and

easy-to-solve subproblems, and then the solutions to the subproblems are combined

together into a global solution to the original problem. Some recent work has also

applied dual decomposition to pose recognition, but on di↵erent models and applica-

tions than ours. Wang et al . [133] model pose estimation and segmentation jointly,

and apply dual-decomposition for e�cient inference. The human pose estimation

guides the foreground pose segmentation at a high level, and the segmentation cues

also help to improve pose estimation results by explaining low-level pixels. Sapp et

al . [108] use dual-decomposition for articulated motion parsing in video using motion

features. A tree model is used to capture the human pose structures, and the mo-

tion cues connect joints across consecutive frames. Dual-decomposition decouples the

problems into a handful of small subproblems where only one joint is being tracked

and is used to connect two tree structures, so all subproblems are still tree structures

and one can perform exact and e�cient inference on them. However, that paper does

not consider hierarchical models as we do here.

3.1.6 Other Relevant Work

More recent papers have tried to address pose estimation problems from di↵erent

perspectives. Hara et al . [50] propose to use a dependency graph for modeling rela-

tions between body parts, and use independently trained discriminative regressors as
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part appearance models. Danstone et al . [24] jointly learn non-linear part regressors

using a two-layered random forests for more discriminative part templates and show

impressive improvements over the start-of-art methods. Sapp et al . [106] capture

multiple pose models for half and full human bodies at a large granularity. Each pose

mode is defined as one of the clusters of the human body joint configurations, and is

trained using a discriminative structured linear model.

3.1.7 Summary

Our proposed model is based on pictorial structures, and is relevant with all the above

variants of deformable models. Similar with other approaches, we use hierarchical

parts with di↵erent scales and resolutions in our model; however in our composite

model, parts with same scale and resolution are in the same layer, and they form

an individual pictorial structure model as well. The entire composite model can

be considered as a mixture of multiple tree submodels, while the inference on these

submodels is performed jointly in the same framework. The “composite” nature of

our model allows the use of dual-decomposition method for e�cient inference.

3.2 Multi-layer Composite Models

We now describe our technique for pose recognition using multi-layer composite mod-

els. Given an image I and a model of the human body, the goal of pose recognition is

to find high-likelihood model configurations in the image. Our approach builds on the

work of Yang and Ramanan [138] which has demonstrated state-of-art performance.

The key innovation in their deformable part-based model is the use of a mixture of

parts, which allows the appearance of each part to change discretely between di↵er-

48



ent “part types.” One part type is one configuration of the pose for a specific part.

For example, a leg part might have part types like “lying down” or “standing up,”

corresponding to di↵erent orientations and articulations of the leg. These are latent

variables so they must be estimated along with pose, but they allow the model to

switch between di↵erent spatial models in order handle larger variations in pose than

would otherwise be possible. For example, even though the individual appearance

and spatial models for each part type are relatively simple, the composition of the

mixture of parts can approximate complex transformations, such as both in-plane and

out-of-plane image warps. Also, instead of using parts that correspond with natural

body (arms, torso, hands, etc.), authors in [138] use small square part templates for

each joint of the human body (e.g . ankles, elbows, chin, top of head, etc.). This also

gives greater invariance to pose changes, since the appearance of a joint varies less

dramatically than the part appearances themselves.

More formally, their model consists of a set P of parts in a tree-structured model

having edges E ✓ �P
2

�
, such that E is a tree. Let y be a vector that represents a par-

ticular configuration of the parts, i.e. the location and type of each part. They define

a function S(I,y) that scores the likelihood that a given configuration y corresponds

to a person in the image. Moreover, S(I,y) decomposes along the nodes and edges

of the tree:

S(I,y) =
X

p2P
D(I,y

p

) +
X

(p,q)2E

⇣
L(y

p

,y
q

) + T (y
p

,y
q

)
⌘
, (3.1)

where D(I,y
p

) is the score for part p being in configuration y
p

given local image data

(the data term), L(y
p

,y
q

) is the relative location term measuring agreement between

locations of two connected parts, and T (y
p

,y
q

) measures the likelihood of observing
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this pair of part-types. Specifically, D(I,y
p

) is the template matching score for part

p at location y
p

, L(y
p

,y
q

) is defined as the negative Mahalanobis distance between

part locations, and T (y
p

,y
q

) = ~Bt(yp),t(yq) is a part co-occurrence table that is learned

discriminatively in the training stage, where t(y
p

) gives the part type of part p.

3.2.1 Proposed Generalization

We generalize this model to include multiple layers, with each layer like the base model

but with a di↵erent number of parts and a di↵erent tree structure. In particular, let

M = {(P1, E1), ..., (PK

, E
K

)} be a set of K tree-structured models, let yk denote

the configuration of the parts in the k-th model, and let Y = (y1, ...,yK) be the

configuration of the entire multi-layer composite model. We now define a joint scoring

function,

Ŝ(I,Y) =
KX

k=1

S
k

(I,yk) +
K�1X

k=1

�(yk,yk+1), (3.2)

where S
k

(·, ·) is the single-layer scoring function of equation (3.1) under the model

(P
k

, E
k

), and �(yk,yk+1) is the cross-model scoring function that measures the com-

patibility of the estimated configurations between adjacent layers of the model.

As Figure 1.4 shows, we impose a hierarchical structure on the composite model,

such that each part at level k is decomposed into multiple parts at level k + 1. We

call these decomposed parts the child nodes. For a part p 2 P
k

, let C(p) ✓ P
k+1 be

the set of child nodes of p in layer k + 1. The cross-model scoring function � scores

the relative location and part types of a node in one layer with respect to its children

in the layer below,

�(yk,yk+1) =
X

p2Pk

X

q2C(p)

B(yk

p

,yk+1
q

), (3.3)
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where B(yk

p

,yk+1
q

) is also a look-up table, and measures the likelihood of the relative

configuration of a part and its child across the two submodels. Next, we describe

inference in this composite model and then discuss how to learn parameters of the

composite model in Chapter 3.2.3.

3.2.2 Dual Decomposition for E�cient Inference

We have defined our multi-layer composite model as a collection of pose estimation

models and a cross-model scoring function. As Figure 1.4 illustrates, each layer of

the hierarchy is tree-structured, so exact inference within each layer can be performed

e�ciently via dynamic programming. The constraints between layers (blue lines in

the figure) also form a tree-structured model, so they are also amenable to exact

e�cient inference. The overall graphical model has cycles, however, and thus exact

inference on this model is not tractable. Fortunately, we can exploit the natural

decomposition of this composite model into tree-structured subproblems to perform

inference using dual-decomposition. Dual-decomposition is a classical technique [12]

that has recently been introduced to the vision literature [67] for solving inference

problems in loopy graphical models. The idea is to decompose a joint inference

problem into easy sub-problems, solve each sub-problem, and then iteratively have

the sub-problems communicate with each other until they agree on variable values.

The following steps are a straightforward adaptation from [67]. Let C
k

denote the

set of all feasible (discrete) values for yk for each layer of the model. We make a copy

of Y, which we call X = (x1, ...,xK), and enforce equality constraints that require
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Y = X. With this notation, we can rewrite equation (3.2) as:

max
Y,X

KX

k=1

S(I,yk) +
K�1X

k=1

�(xk,xk+1), (3.4)

s.t. yk = xk, yk 2 C
k

, xk 2 C
k

, 8k.

We then dualize the equality constraints, replacing the hard equality constraints

between Y and X with a soft penalty term,

g(�) = max
Y,X

KX

k=1

S(I,yk) +
K�1X

k=1

�(xk,xk+1) +
KX

k=1

�
k

· (yk � xk), (3.5)

s.t. yk 2 C
k

, xk 2 C
k

,

where �
k

is the Lagrangian multiplier that specifies the strength of the penalty, and

· denotes inner product between two vectors. The e↵ect of relaxing the hard equality

constraint is that the maximization can now be decoupled into independent terms,

g(�) =
KX

k=1

max
yk

�
S(I,yk) + �T

k

· yk

�
+max

X

 
K�1X

k=1

�(xk,xk+1)�
KX

k=1

�T
k

· xk

!
, (3.6)

again with yk 2 C
k

, xk 2 C
k

. In this form, it is clear that g(�) can by evaluated for

a given � by solving a series of simpler sub-problems. The optimal Y is found by

maximizing each term of the first summation, i.e. by performing inference on each

individual layer of our composite model, which is e�cient because each layer is a

tree-structured model. We can find the optimal X by solving the maximization in

the second term of equation (3.6), which is also tree-structured and allows the use of

dynamic programming.

Figure 3.1 provides an intuitive illustration of performing dual-decomposition on

our model. Each of the slave problems are tree-structured inference tasks and can be

performed e�ciently with dynamic programming. The master’s job is to encourage

agreement between the solutions found by the slave tasks.
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Master 

Slave-0 Slave-1 Slave-K 

Figure 3.1: Dual-decomposition on our multi-layer composite pose model. Messages

are passed between Master problem (primal objective) as slave problems (decomposed

dual objectives) iteratively.

It can be shown [12] that for each value of �, the function g(�) provides an

upper-bound on the original (constrained) maximization. Thus, we can set up a dual

problem that achieves the tightest upper-bound as min
�

g(�). This dual problem is

convex but non-smooth [12], so we use subgradient descent to perform the minimiza-

tion. Subgradient descent is an iterative algorithm that updates the current setting

of �(t)
k

at iteration t,

�(t+t)
k

 �(t)
k

� ↵(t)
⇣
yk(�(t)

k

)� xk(�(t)
k

)
⌘
, (3.7)

where yk(�(t)
k

),xk(�(t)
k

) are the optimal solutions in equation (3.6) for the current

setting of �(t)
k

, and ↵(t) is the step size at iteration t. For a good choice of step

size, subgradient descent is guaranteed to converge to the optimum of the dual prob-

lem [12]. We discuss implementation details like the step size and stopping criteria

in Chapter 5.3.
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3.2.3 Learning with Structural SVMs

We now address the issue of learning the parameters of our composite model, including

the submodel parameters for each layer and the parameters for the cross-model scoring

function.

Features. We use four kinds of features: the part appearance features that help

learn what each part “looks like” based on local image evidence, deformation fea-

tures which capture spatial relationships between parts, the part type co-occurrence

features within layers, and the part type co-occurrence features across layers. We

combine the first three of these into a feature vector called f(I
m

,yk), which denotes

the vector for image I
m

under submodel k, and define in the same way as [138]. In par-

ticular, f(I
m

,yk) consists of HOG features for each part filter, part type co-occurrence

features, and deformation features (dx, dx2, dy, dy2), where (dx, dy) is the displace-

ment between two parts. We denote the fourth feature type, the cross-model part

type co-occurrence feature as f�(Y) by converting the 2D look up table �
t(yp),t(yq) to

a 1D vector, where �
t(yp),t(yq) = 1 if t(y

p

) = t(y
q

), and otherwise �
t(yp),t(yq) = 0.

Parameters. To perform joint training for the entire composite model, we stack all

features of all of the layers along with the cross-model features into a single feature

vector �(I
m

,Y),

�(I
m

,Y) =
h
f(I

m

,y1), f(I
m

,y2), . . . , f(I
m

,yK), f�(Y)
i
, (3.8)

and parameters of the model are also placed into a single vector,

� = (�1, . . . , �K , ��).

The score of the entire composite model on a given image and configuration can then
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be written as a dot product between parameters and features,

Ŝ(I,Y) = � · �(I
m

,Y).

Training. Given training data with labeled positive instances, i.e. images containing

people with annotated part locations
�{I

m

,Y
m

} | m 2 pos
 
, and negative instances,

i.e. images not containing people
�{I

m

, ;} | m 2 neg
 
, we learn � with a structured

SVM formulation [125],

min
�

1

2
k�k2 + C

X

m

⇠
m

(3.9)

s.t. � · �(I
m

,Y
m

) � 1� ⇠
m

8m 2 pos

� · �(I
m

,Y)  �1 + ⇠
m

8m 2 neg, 8Y.

We optimize this objective function using the dual coordinate descent method of [138].

Note that this formulation forces all of the exponentially many configurations of

negative instances to score lower than�1. In practice, we perform dual decomposition

with our multi-layer composite model on each negative image to search for hard

negative training examples. Implementation details are explained in Chapter 3.3.2.

3.3 Experiments

3.3.1 Datasets

We evaluate our composite models on three challenging datasets: Image Parse [100],

UIUC Sport [137] and Leeds Sport Pose [57]. Parse contains 100 training and 205 test

images, while UIUC Sport contains 649 training and 650 test images. Leeds Sport

Pose is much larger, with 1000 training and 1000 test images. All three datasets have
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one person per image annotated with 14 body joints. We follow [138] and draw our

negative images from the INRIA person dataset [23].

3.3.2 Implementation

We implemented our inference and learning methods described in Chapter 3.2. Here

we give some implementation details that are important in practice.

Inference

For the part appearance models, we follow [138] and others by using HOG features [23]

computed at multiple resolutions, yielding a feature pyramid for each image. We per-

form dual decomposition on each level of the feature pyramid independently, collect

detections from all of the levels, and remove overlapping detections via non-maximal

suppression. In our current implementation, we restrict our cross-modeling scoring

function B(·, ·) in equation (3.3) to capture only part type co-occurrence relations.

This gives a relatively small label space, which allows e�cient inference while ob-

taining good performance (although modeling relative location between parts across

layers is an interesting direction for future work).

The subgradient descent step size in equation (3.7) is important in making infer-

ence work well in practice. We experimented with various strategies, finding that a

modification of Polyak’s step size rule [94],

↵(t)
k

=
1 +m

⌧ (t) +m
· (dual

(t) � primal(t)
best

)

krg
t

k ,

worked best, where dual(t) is the objective value of the dual problem in equation (3.6)

in iteration t, primal(t)
best

is the best primal objective value in equation (3.4) observed
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Figure 3.2: Primal objective and dual objective (left) and primal-dual gap (right) as

a function of number of iterations during subgradient descent.

so far in iterations up to t, krg
t

k is the norm of the subgradient at t, m is a scalar

constant (we use m = 10), and ⌧ (t) is the number of times that the dual-objective has

increased up to t. Using this step size rule, dual decomposition converges to a very

small gap (< 0.001) quickly, as shown in Figure 3.2 (for a sample image). The entire

inference process takes about 20 seconds per Parse image on a 3.0GHz machine.

Learning

For each dataset, we trained several variants of our composite models: 1) a two-

layer model consisting of a 1-part model and a 26-part model; 2) a two-layer model

consisting of a 10-part model and a 26-part model; 3) a three-layer model consisting

of 1-part, 10-part, and 26-part models.

In all of these models, the 26-part model is the same defined in [138], consisting

of both body parts and joints. The 10-part model is defined using new body parts

(head, torso, upper arms, lower arms, upper legs, lower legs), and the 1-part model

57



is a simple whole-body template mixture model. The annotations for the 10 and 1

part models were derived from the existing annotations in the datasets. As in [138],

the mixture types of each body part were obtained by k-means clustering over joint

locations. For the 26-part model, we use the same number of part types per body

part as in [138], i.e. a variable number of 5 or 6 mixtures for each part, while for the

10-part model we use 5 torso types, 5 head types, 5 arm types and 6 leg types. The

1-part model uses 9 types. To learn each composite model, we first train a separate

model for each layer using the publicly-available code of [138], and then use these

models as initialization for learning our composite model.

In practice, there are many more negative (non-person) instances available than

positive instances. To reduce the set of negative exemplars that must be considered in

equation (3.9), we select hard negative exemplars for the next iteration of learning by

looking for high-scoring non-person instances under the current multi-layer composite

model. To construct negative training instances e�ciently, we run the composite

model on each negative image, select all detected poses having score above a threshold,

sort the detections from each layer, and construct joint exemplars by matching them

in the order of detection scores. To speed up training, we stopped subgradient descent

after 50 iterations, since in practice the optimization algorithm has typically converged

by that point (as in the example in Figure 3.2). A visualization of a sample multi-layer

composite model learned using our technique is shown in Figure 3.3.

3.3.3 Results

Evaluation Criteria. We evaluate our results using the Percentage of Correct Parts

(PCP) metric, which counts the fraction of body parts that are correctly localized
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Figure 3.3: Part-based models used in our multi-layer composite model. For each layer

(row) of the composite model, we show four randomly-chosen mixture components.

according to the ground-truth. One needs to define what a correct localization is,

since small discrepancies in part pose are probably not noticable in most applications.

Unfortunately, as pointed out in [93], the PCP scoring metric has been implemented

in slightly di↵erent ways in di↵erent papers, which has led to some confusion in the

literature. These di↵erences fall along two di↵erent dimensions. First, there are two

subtly-di↵erent definitions of a correct part localization: 1) Part is correctly localized

if the distance of both its endpoints from respective ground truth endpoints is less than

a fraction of the part length; or 2) Part is correctly localized if the mean distance

between estimated and ground truth endpoints is less than a fraction of the part

length.

This di↵erence is illustrated in Figure 3.4.
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Figure 3.4: Illustration of distances D1 and D2, the two measurements involved in

evaluating body part localizations (see text). The first measure of PCP considers a

part correctly localized if both distances are below a threshold, whereas the second

measure considers a part correctly localized if the mean of D1 and D2 is below a

threshold.

Second, there are two ways to compute the final aggregate PCP score across the

dataset: A) PCP is calculated for every image, and averaged across all images to

produce an aggregate score; or B) PCP is calculated only for images in which the

human is correctly localized according to a ground truth bounding box, these scores

are averaged together, and then multiplied by the detection rate.

The cross-product of these two possibilities yields four possible evaluation criteria.

According to our understanding, Eichner et al . [33] proposed variant 1B, but their

publicly-released software toolkit implemented 2B which yields higher scores. Yang et

al . [138] also used 2B, while both Pischulin et al . [93] and Wang et al . [137] used 1A.

Unfortunately, these seemingly subtle variations lead to significant di↵erences. We

follow the two latter papers and also use 1A, which we hope will become the standard
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definition, but also report results under the other variants to illustrate the significant

di↵erences they create. Note that [93] do not report PCP numbers for individual

parts, but rather combine right and left parts together. We do the same, and also

average the PCP of the left and right limbs reported by [137] to convert their results

into this metric as well. Recently, Yang et al . [139] propose a novel evaluation metric

called Percentage of Correct Keypoints (PCK) and Average Precision of Keypoints

(APK), which are based on a comparison between predicted and ground truth bound-

ing boxes surrounding each keypoint of the human body. Since no previous work has

reported the performance under such criteria, it is di�cult for us to do systematic

comparisons with this metric, so we stick with the better-known PCP metric here.

Results. Results on Parse, UIUC Sport and Leeds Sport Pose datasets are shown

in Table 3.1 for our technique and several other recent methods. To make all of the

numbers compatible, we converted all numbers (both our own and those in the litera-

ture) to use criteria 1A. To do this, we re-computed the results from [138] to use this

criterion, and for [100] we use the re-computed statistics reported in [137]. We see

that our composite models outperform state-of-the-art methods on all three datasets,

beating [138] by about 2 percentage points for Parse and by 1.0 � 1.5 percentage

point for the other two datasets. We also show results from two recent techniques,

Pishchulin et al . [93] and [58], that are not directly comparable to our technique or

the other baselines because they used additional training data with richer annota-

tions.1 Our results do not outperform these techniques, but again we cannot compare

1In particular, Johnson et al . [58] annotated a training dataset of 10, 800 images downloaded

from Flickr using Amazon Mechanical Turk. Pishchulin et al . [93] fit a 3D human body shape model

to each training image with annotated 2D body keypoints, and then vary the 3D shape parameters
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them directly because they use vastly more training data, and our results are still

numerically competitive given that we use much less information during training.

Table 3.2 presents experimental results under alternative definitions of PCP. For

PCP criterion 1A, we present scores for di↵erent values of the part localization thresh-

old (which specifies the percentage of body part length that part endpoints can be

from the positions given in ground truth). The table also shows PCP results com-

puted under two alternative definitions that have been used in the literature (1B and

2B). We see that seemingly subtle di↵erences in PCP definition can yield very di↵er-

ent conclusions. Our composite models beat [138] under all of the criteria, but which

composite model performs best depends on the PCP metric. For instance, the 2-layer

model (26+1) achieves the best performance under 1A, but the 3-layer model per-

forms best under 1B and 2B. Moreover, variant 2B yields much higher absolute PCP

scores, illustrating the importance of adopting a consistent metric to avoid further

confusion in the literature.

Some qualitative pose recognition results are presented in Figure 3.5, showing

cases in which our method correctly estimated pose while [138] failed for one or more

limbs. We also show some images on which our technique failed.

We also evaluated our techniques in terms of person detection rate, with 79.0%,

81.9%, and 82.4% for our 26+10, 26+1, and 26+10+1 models, respectively, compared

to 76.6% for [138]. This suggests that much of our increase in PCP is due to more

accurate detections. This is an intuitive result because our 1-part model (consisting

of a mixture of large HOG templates) can be considered a person detector (essentially

the same as [23]). Our composite models featuring models at multiple scales combine

in order to create new 2D poses for additional training data.
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the advantages of single-part models for person detection, with the highly flexible

multi-part models needed for accurate part localization.

3.4 Summary

In this chapter, we presented a multi-layer composite model for human pose estima-

tion problems. By combining di↵erent cues from di↵erent submodels, our composite

model outperforms state-of-the-art pose estimation methods on challenging datasets.

These results show that hierarchical structures and mixture models for parsing hu-

man body is important, and dual decomposition technique for such composite model

is e↵ective in practice. Our model is a general framework for combining di↵erent

pose estimation models. In future work, we plan to study any improvements to our

approach, e.g . capture richer cross-model constraints by defining spatial constraints

between adjacent submodels, or learn the composite model in a weakly supervised

mode when annotations are not available for all key points on the training images.

Our model is also related to interesting tasks like human action recognition, and has

potential application in surveillance problems.
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Figure 3.5: Sample results. (Top): Examples in which [138] failed, but our 3-level

model estimated poses correctly. (Bottom): Some failure cases of our model.
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Parse dataset

Upper Lower Upper Lower

Torso legs legs arms arms Head Total

Ramanan et al . 52.1 37.5 31.0 29.0 17.5 13.6 27.2

Yang et al . 82.9 69.0 63.9 55.1 35.4 77.6 60.7

Ours (26+10) 82.0 72.4 67.8 55.6 36.6 79.0 62.6

Ours (26+1) 85.6 71.7 65.6 57.1 36.6 80.4 62.8

Ours (26+10+1) 81.0 71.7 67.6 55.9 36.3 79.5 62.3

Pishchulin et al . * 88.8 77.3 67.1 53.7 36.1 73.7 63.1

Johnson et al . (2011)* 87.6 74.7 67.1 67.3 45.8 76.8 67.4

UIUC Sport dataset

Ramanan et al . 28.7 7.3 19.2 7.5 20.6 12.9 15.1

Wang et al . 75.3 49.2 39.5 25.2 11.2 47.5 37.3

Yang et al . 85.3 61.3 55.5 49.7 35.5 73.5 56.3

Ours (26+10) 85.4 61.6 57.9 49.1 34.8 72.9 56.4

Ours (26+1) 86.0 62.2 57.5 51.0 36.3 73.7 57.3

Ours (26+10+1) 86.2 61.2 55.7 49.9 35.9 73.8 56.5

Leeds Sport Pose dataset

Johnson et al . (2010) 78.1 65.75 58.8 47.4 32.85 62.9 55.1

Yang et al . 86.0 62.4 55.25 48.6 31.65 80.0 56.2

Ours (26+10) 86.2 64.0 57.3 47.6 31.9 79.8 56.6

Ours (26+1) 86.9 65.3 58.3 48.9 32.3 80.5 57.7

Ours (26+10+1) 86.2 64.1 57.4 47.9 31.9 80.0 56.9

Johnson et al . (2011)* 88.1 74.5 66.5 53.7 38.9 74.6 62.7

Table 3.1: Pose estimation results (PCP) on Parse (top), UIUC Sport (middle), and

Leeds Sport (bottom) datasets. PCP scores are shown for each of six body parts and

the combined score for all parts. All PCP scores here use criterion 1A (see text for

details); for consistency, we re-computed the results from [138] to use this criterion,

and for [100] we use the re-computed statistics reported in [137]. *Note that [93]

and [58] are not directly comparable because they use additional training data with

more annotations.
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Threshold Yang et al .
Ours

(26+10)
Ours

(26+1)
Ours

(26+10+1)

P
C
P

(v
ar
ia
nt

1A
)

0.2 33.4 34.5 34.5 34.3

0.3 47.2 49.2 48.3 48.9

0.4 56.0 57.6 56.5 57.3

0.5 60.7 62.6 62.8 57.3

0.6 64.4 65.9 66.9 65.7

0.7 67.2 68.7 70.0 68.6

0.8 69.7 71.3 72.0 70.9

0.9 71.5 73.0 73.6 72.7

PCP 1B 0.5 56.0 58.5 59.3 59.5

PCP 2B 0.5 74.9 75.0 75.8 75.9

Table 3.2: Evaluation results on the Parse dataset under di↵erent definitions of Per-

centage of Correct Poses (PCP), using variants 1A, 1B and 2B which have all been

used by di↵erent papers in the literature (see text for details). For variant 1A, we

show results under di↵erent evaluation thresholds, where larger thresholds are more

lenient in scoring part localizations.
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CHAPTER 4

Segmentation-based Local Attribute Discovery

The previous chapter introduced fully supervised CRF models for modeling the human

body as a hierarchical structure. In this chapter, we discuss our proposed method for

modeling localized attributes for biological categories (e.g . birds, butterflies). Our

approach treats the attribute discovery problem as a “region selection” problem, and

use latent variables to model the region selection in each training image. Thus,

the problem can be naturally described using a latent conditional random field, and

we propose a semi-supervised training approach to learn the model parameters and

infer the region selections at the same time. We first review existing literature in

Section 4.1, and then introduce our method for modeling local attributes using latent

CRFs in Section 4.2. We show that our discovered local attributes can be used in

di↵erent fine-grained problems by conducting well-designed experiments (Section 4.3).

4.1 Related Work

Visual attributes describe characteristics of an object. For example, a fish has fins,

gills, but no limbs; it lives in the water and is vertebrate. All these visual charac-

teristics are called visual attributes. Visual attributes are both discriminative and

semantically meaningful, providing semantic representations for objects, and can be
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generalized across di↵erent categories. They are useful for fine-grained recognition,

and support zero-shot learning [88]. Attributes can be either global or local. Global

attributes measure visual characteristics (e.g . open, congest, indoor, cluttered, etc.)

based on global features. Local attributes, on the other hand, describe local visual

characteristics (e.g . red strips on the wing of a bird), which are especially useful when

images are similar in terms of global features (e.g . fine-grained categories). Here we

propose to use CRFs to model localized attributes, and design novel approaches for

discovering local attributes automatically from training images.

4.1.1 Visual Attribute Discovery

Visual attributes for classification and recognition have received significant attention

over the last few years. Much of this work assumes that the attribute vocabulary

is defined ahead of time by a human expert [17, 69, 71, 136]. For example, Branson

et al . [17] aim at improving existing object recognition techniques on fine-grained

categories by using a human-computer interactive method. It repeatedly requests

human users to answer yes/no type questions on predefined visual attributes of the

unknown object instance, and refine the recognition result by incorporting human

feedbacks. Kumar et al . [69] trains a list of classifiers for facial attributes (defined

by domain experts and labeled by Amazon Mechanical Turk), and then treats the

classifer scores on training face images as middle-level image representations.

An exception is the work of Parikh and Grauman [90] which proposes a system that

discovers the vocabulary of attributes. Their system iteratively selects discriminative

hyperplanes between two sets of images (corresponding to two di↵erent subsets of

image classes) using global image features (e.g. color, GIST); it would be di�cult
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to apply this approach to find local attributes because of the exponential number of

possible local regions in each image.

4.1.2 Modeling Local Attributes

We define local attributes to be local image regions that are discriminative for object

recognition tasks (e.g . image categorization, image annotation, and zero-shot learning,

etc.) and are semantically meaningful so that they can be shared across di↵erent

object categories. A few papers have studied how to discover local attributes. Berg

et al. [11] identify attributes by mining text and images from the web. Their approach

is able to localize attributes and rank them based on visual characteristics, but these

attributes are not necessarily discriminative and thus may not perform well for image

classification; they also require a corpus of text and images, while we just need images.

Wang and Forsyth [131] present a multiple instance learning framework for both local

attributes and object classes, but they assume attribute labels for each image are

given. In contrast, our approach does not require attribute labels; we discover these

attributes automatically.

Work outside the context of attribute discovery has explored local discriminative

regions for image classification. For example, Yao et al . [141] use a random forest

with dense sampling to discover discriminative regions. The random forest combines

thousands of region classifiers together, thus improving classification compared with

using only low-level image features. In contrast, our approach treats each image as a

bag of “regions” and applies multiple instance learning to find the most discriminative

ones. We propose to enforce pairwise constraints on object geometry, and thus is more

likely to find image regions that are both discriminative and semantically meaningful.
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4.1.3 Part Discovery for Object Models

Related to our work on local attribute selection is the extensive literature on learn-

ing part-based object models for recognition (e.g. [39, 41, 109, 138]). These learning

techniques usually look for highly distinctive parts – regions that are common within

an object category but rare outside of it – and they make no attempt to ensure that

the parts of the model actually correspond to meaningful semantic parts of an ob-

ject. Local attribute discovery is similar in that we too seek distinctive image regions,

but we would like these regions to be shared across categories and to have semantic

meaning. Note that while most semantically meaningful local attributes are likely to

correspond to semantic parts of objects [109], we view attributes as more general: an

attribute is potentially any visual property that humans can precisely communicate

or understand, even if it does not correspond to a traditionally-defined object part.

For example “red-dot in center of wings” is a valid local attribute, even though there

is not a single butterfly part that corresponds to it.

Maji and Shakhnarovich [82] propose an approach for “part discovery” on land-

mark images, by collecting pairs of user click annotations. They use exemplar SVMs [83]

to find salient regions, while using click pair information to jointly infer object parts.

Their method does not optimize classification accuracy, while our proposed approach

learns a set of regions by maximizing the classification performance through a multiple

instance learning framework.

4.1.4 Automatic Object Discovery

Our work is also related to the literature on automatic object discovery and unsuper-

vised learning of object models [27,61,74]. Ferrari et al . [27] use a conditional random
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field model for alternately localizing objects in images and learning object appear-

ance models. Gunhee et al . [61] extract superpixels on each image in the training

dataset to generate region hypothesis, and then identifies the statistically significant

regions through iterative link analysis. Lee and Grauman [74] computes local fea-

ture descriptors (e.g . SIFT), and cluster images while localizing object foreground

through feature correspondences between pairs of images. However, these methods

aim to find objects that are common across images, while we are interested in finding

discriminative local regions that will maximize classification performance.

Summary. We propose local attributes as a novel image representation for fine-

grained object recognition. In this chapter, we design approaches for modeling and

discovering local attributes on biological objects. We use a segmentation-based ap-

proach to generate region candidates. Region candidates are then treated as input to

latent CRF framework, and human feedback is incorporated in order to choose can-

didates that are both discriminative and semantically meaningful. Our CRF model

consists of multiple layers, where each layer uses a fully connected graph to model

similarity or distances between image region appearances. Adjacent layers are con-

nected using spatial overlap constraints. We use local attributes for fine-grained image

classification and image annotation tasks.

4.2 Modeling Localized Attributes via Latent CRF

We first consider the problem of finding discriminative and machine-detectable visual

attributes in a set of training images. We then describe a recommender system that

finds candidates that are likely to be human-understandable and presents them to

users for human verification and naming.
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4.2.1 Latent CRF Model Formulation

We assume that each image in the training set has been annotated with a class label

(e.g. species of bird) and object bounding box similar to [134,141],1 but that the set

of possible attributes and the attribute labels for each image are unknown. We run

a hierarchical segmentation algorithm on the images to produce regions at di↵erent

scales, and assume that any attribute of interest corresponds to at most one region in

each image. This assumption reduces the computational complexity and is reasonable

because the hierarchical segmentation gives regions at many scales.

Formally, we are given a set of annotated training images I = (I1, . . . , IM

), with

each exemplar I
i

= (I
i

, y
i

) consisting of an image I
i

and a corresponding class label

y
i

. For now we assume a binary class label, y
i

2 {+1,�1}; we will generalize this to

multiple classes in Chapter 4.2.4. Each image I
i

consists of a set of overlapping multi-

scale regions produced by the hierarchical segmentation. To find a discriminative local

attribute for these images, we look for regions in positive images, one per image, that

are similar to one another (in terms of appearance, scale and location) but not similar

to regions in negative images. We formulate this task as an inference problem on a

latent conditional random field (L-CRF) [95], the parameters of which we learn via a

discriminative max-margin framework in the next section.

First consider finding a single attribute k for the training set I. For each image

we want to select a single region lk
i

2 I
i

such that the selected regions in the positive

images have similar appearances to one another, but are di↵erent from those on the

negative side. We denote the labeling for the entire training set as L
k

= (lk1 , . . . , l
k

M

),

1 [134] in fact requires the user to interactively segment the object out.
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and then formulate this task in terms of minimizing an energy function [26],

E(L
k

|I) =
MX
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�
k
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i

|I
i

) +
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i=1
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j=1
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(lk
i
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j

|I
i

, I
j

), (4.1)

where �
k

(lk
i

|I
i

) measures the preference of a discriminative classifier trained on the

selected regions to predict the category labels, while  
k

(lk
i

, lk
j

|I
i

, I
j

) measures pairwise

similarities and di↵erences between the selected regions. In particular, we define the

unary term as,

�
k

(lk
i

|I
i
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i

wT

k

· f(lk
i

) (4.2)

where f(lk
i

) denotes a vector of visual features for region lk
i

and w
k

is a weight vector.

We will use several di↵erent types of visual features, as discussed in Section 4.3; for

now we just assume that there are d feature types that are concatenated together

into a single n-dimensional vector. The weights are learned as an SVM on the latent

regions from positive and negative images (discussed in Chapter 4.2.2).

The pairwise consistency term is given by,
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(4.3)

where D(·, ·) is a function Rn ⇥ Rn ! Rd that given two feature vectors computes a

distance for each feature type, ~↵�
k

and ~↵+
k

are weight vectors, and ~�
k

= (��
k

, �+
k

, �0
k

)

are constant bias terms (all learned in Chapter 4.2.2). This pairwise energy function

encourages similarity among regions in positive images and dissimilarity between

positive and negative regions. We allow negative regions to be di↵erent from one

another since they serve only as negative exemplars; thus we use a constant �0
k

as the

edge potential between negative images in lieu of a similarity constraint.
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Latent RegionImageClass Label

y=−1y=+1

Figure 4.1: Our L-CRF model for one active split with K = 2 attributes, where white

circles represent latent region variables (lk
i

), shaded circles represent observed image

features (I
i

), and squares represent observed image class labels (y
i

).

The energy function presented in equation (4.1) defines a first-order Conditional

Random Field (CRF) graphical model. Each vertex of the model corresponds to an

image, and the inference problem involves choosing one of the regions of each image

to be part of the attribute. Edges between nodes reflect pairwise constraints across

images, where here we use a fully-connected graphical model such that there is a

constraint between every image pair.

The single attribute candidate identified by the L-CRF may not necessarily be

semantically meaningful, but there may be other candidates that can discriminate

between the two categories that are semantically meaningful. To increase the chances

of finding these, we wish to identify multiple candidate attributes. We generalize the

above approach to select K�2 attributes for a given split by introducing an energy

function that sums equation (4.1) over all K attributes. We encourage the CRF to
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find a set of diverse attributes by adding an additional term that discourages spatial

overlap among selected regions,

E(L|I) =
KX

k=1

E(L
k

|I) +
MX

i=1

X

k,k

0

�(lk
i

, lk
0

i

|I
i

), (4.4)

where L = (L1, . . . , LK

) denotes the latent region variables, � measures spatial overlap

between two regions,

�(lk
i

, lk
0

i

|I
i

) = � · area(l
k

i

\ lk
0

i

)

area(lk
i

[ lk
0

i

)
, (4.5)

and � � 0 is a scalar which is also learned in the next section. This term is needed

because we want a diverse set of candidates; without this constraint, the CRF may find

a set of very similar candidates because those are most discriminative. Intuitively,

�(·) penalizes the total amount of overlap between regions selected as attributes.

Minimizing the energy in equation (4.4) also corresponds to an inference problem

on a CRF; one can visualize the CRF as a three-dimensional graph with K layers,

each corresponding to a single attribute, with the edges in each layer enforcing the

pairwise consistency constraints  among training images and the edges between

layers enforcing the anti-overlap constraints �. The vertices within each layer form a

fully-connected subgraph, as do the vertices across layers corresponding to the same

image. Figure 4.1 illustrates the CRF for the case of two attributes.

4.2.2 Training

There are two sets of model parameters that must be learned: the weight vectors w
k

in the unary potential of the CRF, and the parameters of the pairwise potentials  

and � which we can concatenate into a single vector ~↵,

~↵ = (~↵�
1 , . . . , ~↵

�
K

, ~↵+
1 , . . . , ~↵

+
K

, ~�1, . . . , ~�K , �).
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Figure 4.2: Sample latent region evolution on an active split, across three iterations

(top to bottom). The latent region selected by the CRF on each positive image in

each iteration is shown. These variables converged after three iterations to roughly

correspond to the bird’s red head. Best viewed on-screen and in color.

We could easily learn these parameters if we knew the correct values for the latent

variables L, and we could perform CRF inference to estimate the values of the latent

variables if we knew the parameters. To solve for both, we take an iterative approach

in the style of Expectation-Maximization. We initialize the latent variables L to

random values. We then estimate w
k

in equation (4.2) for each k by learning a linear

SVM on the regions in L
k

, using regions in positive images as positive exemplars and

regions in negative images as negative exemplars. Holding w
k

fixed, we then estimate

the pairwise parameters ~↵ via a standard latent structural SVM (LSSVM) framework,

min
~↵

�k~↵k2 + ⇠, such that 8l̃
i

2 I
i

, 8ỹ
i

2 {+1,�1}, (4.6)

E({l̃
i

}|{(I
i

, ỹ
i

)})�min
L⇤

E(L⇤|I) � �({ỹ
i

}, {y
i

})� ⇠

where ⇠ � 0 is a slack variable and the loss function is defined as the number of

mislabeled images,

�({ỹ
i

}, {y
i

}) =
X

i

ỹi 6=yi .
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We solve this quadratic programming problem using CVX [46]. Since there are

an exponential number of constraints in equation (4.6), we follow existing work on

structured SVMs [125] and find the most violated constraints, in this case using tree-

reweighted message passing (TRW) [65] on the CRF. Once the CRF parameters have

been learned, we hold them fixed and estimate new values for the latent variables L

by performing inference using TRW. This process of alternating between estimating

CRF parameters and latent variable values usually takes 3 to 5 iterations to converge

(Figure 4.2). In our experiments we use K = 5. This takes about 3-5 minutes on a

3.0GHz server.

The above formulation was inspired by Multiple Instance CRFs [26,27], but with

some important di↵erences (besides application domain). Our formulation is a stan-

dard latent structural SVM in which we minimize classification error, whereas the

loss function in [26] is based on incorrect instance selections. Their unary potential

is pre-trained instead of being updated iteratively. Finally, our model simultaneously

discovers multiple discriminative candidate attributes (instances).

4.2.3 Attribute Detection

To detect attributes in a new image I
t

, we simply add I
t

to the L-CRF as an additional

node, fixing the values of the latent variables for the training image nodes. We

perform CRF inference on this new graph to estimate both the class label ŷ
t

and its

corresponding region label l̂
t

2 I
t

. If ŷ
t

= 1, then we report a successful detection

and return l̂
t

, and otherwise report that I
t

does not have this attribute. Note that

this inference is exact and can be done in linear time.
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4.2.4 Active Attribute Discovery

Having shown how to automatically discover attributes for images labeled with one

of two classes (positive or negative), we now describe how to discover attributes in

a dataset with multiple category labels, y
i

2 {1, . . . , N}. We would like to discover

an attribute vocabulary that collectively discriminates well among all categories. It

is intractable to consider all O(N2) possible binary splits of the labels, so we use an

iterative approach with a greedy heuristic to try to actively prioritize the order in

which splits are considered. At each iteration, we identify the two categories that

are most similar in terms of the presence and absence of attributes discovered so far.

We use these two categories to define an active split, and find a set of discriminative

attributes for this split using the procedure above. We then add these to our attribute

set, and repeat the process.

4.2.5 Identifying Semantic Attributes

The approach we described in previous sections is able to discover K candidate dis-

criminative local attributes for each active split, but not all of these will be meaningful

at a semantic level. We now describe how to introduce a minimal amount of human

feedback at each iteration of the discovery process in order to identify candidates that

are discriminative and meaningful. Of the K candidates, we first identify the can-

didate that is most discriminative – i.e. that increases the performance of a nearest

neighbor classifier the most on held out validation data. We present this candidate

to a human user by displaying a subset of the positive training images from the cor-

responding active split marked with the hypothesized attribute regions determined

by the L-CRF (see Figure 4.7). If the user finds the candidate meaningful (and thus
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provides it with a name), it is added to our vocabulary of attributes. If not, that can-

didate is rejected, and we select the second most discriminative candidate in our pool

of K candidates. If none of the candidates is judged to be meaningful, no attribute

is added to our pool, and we identify the second most confusing pair of categories as

our next active split.

In order to reduce user response time we propose an attribute recommender system

that automatically prioritizes candidates before presenting them to a user. It uses past

user feedback to predict whether the user is likely to find a new candidate attribute

meaningful. Our recommender system is based on the hypothesis that users judge

the meaningfulness of an attribute by whether it is located on consistent parts of the

object across the positive instances (e.g. if the regions in the images correspond to

the same nameable part of a bird).

We use a simple approach to measure the spatial consistency of an attribute

with respect to the object (illustrated in Figure 4.3). At each active split, we train

our attribute recommendation system using all attribute candidates that have been

presented to human users so far, with accepted ones as positive exemplars and rejected

ones as negative exemplars. Note that the L-CRF model (Section 4.2.1) can also

encourage spatial consistency among training images (as we will see in Section 4.3);

however those constraints are only pairwise, whereas the features here are higher-

order statistics capturing the set of regions as a whole. Our recommender system

is related to the nameability model of [90], but that model was restricted to global

image-level attributes, whereas we model whether a group of local regions is likely to

be deemed consistent and hence meaningful by a human.

79



4.3 Experiments

We now test our proposed approach to local attribute discovery. We use data from

two recent datasets with fine-grained category labels: a subset of the Caltech-UCSD

Birds-200-2011 (CUB) [130] dataset containing about 1,500 images of 25 categories

of birds, and the Leeds Butterfly (LB) [134] dataset, which contains 832 images

from 10 categories of butterflies. We apply a hierarchical segmentation algorithm [6]

on each image to generate regions, and filter out background regions by applying

GrabCut [104] using the ground truth bounding boxes provided by the datasets (for

LB, using a bounding box around the GT segmentation mask in order to be consistent

with CUB). Most images contain about 100� 150 such regions.

For the region appearance features f(·) in equations (4.2) and (4.3), we combine

a color feature (color histogram with 8 bins per RGB channel), a contour feature

(gPb [6]), a size feature (region area and boundary length), a shape feature (an 8⇥ 8

subsampled binary mask), and spatial location (absolute pixel location of the cen-

troid). For the distance function D(·, ·) in equation (4.3), we compute �2 distances

for the color, contour, size, and shape features, and Euclidean distance for the spatial

location feature. During learning, we constrain the weights of ~↵+
k

and ~↵�
k

correspond-

ing to the spatial location feature to be positive to encourage candidates to appear at

consistent locations. The weights in ~↵+
k

and ~↵�
k

corresponding to other feature types

are constrained to be nonnegative and nonpositive, respectively, to encourage visual

similarity among regions on the positive side of an active split and dissimilarity for

regions on opposite sides. The bias terms ~�
k

are not constrained.

Exhaustive data collection for all 200 categories in the CUB birds dataset is not
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feasible because it would require about a million user responses. So we conduct sys-

tematic experiments on three subsets of CUB: ten randomly-selected categories, the

ten hardest categories (defined as the 10 categories for which a linear SVM classifier

using global color and gist features exhibits the worst classification performance), and

five categories consisting of di↵erent species of warblers (to test performance on very

fine-grained category di↵erences). Each dataset is split into training, validation, and

testing subsets. For CUB these subsets are one-half, one-quarter, and one-quarter of

the images, respectively, while for LB each subset is one-third.

We use Amazon’s Mechanical Turk to run our human interaction experiments. For

each dataset, we generate an exhaustive list of all possible active splits, and use an

“o✏ine” collection approach [90] to conduct systematic experiments using data from

real users without needing a live user-in-the-loop. We present attribute visualizations

by superimposing on each latent region a “spotlight” consisting of a 2-D Gaussian

whose mean is the region centroid and whose standard deviation is proportional to its

size (and including a red outline for the butterfly images to enhance contrast). We do

this to “blur” the precise boundaries of the selected regions, since they are an artifact

of the choice of segmentation algorithm and are not important. We present each

candidate attribute to 10 subjects, each of whom is asked to name the highlighted

region (e.g . belly) and give a descriptive word (e.g . white). See Figure 4.7. We

also ask the subjects to rate their confidence on a scale from 1 (“no idea”) to 4

(“very confident”); candidates with mean score above 3 across users are declared to

be semantically meaningful.
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4.3.1 Attribute-based Image Classification

We now use our discovered attributes for image classification. We detect attributes

in validation images and learn linear SVM and nearest-neighbor classifiers, and then

detect attributes and measure performance on the test subset. We represent each

image as a binary feature vector indicating which attributes were detected. Each

category is represented as the average feature vector of its training images. The

nearest-neighbor classifier works by assigning the test image to the category with the

closest feature vector (similar to [71]). The SVM classifier is trained directly on the

above binary features using cross-validation to choose parameters.

Figure 4.4 presents classification results on CUB birds and LB butterflies, compar-

ing the attribute vocabularies produced by our Proposed technique with two base-

lines that are representative of existing approaches in the literature. These results do

not include the recommender system; we evaluate that separately. Hand-listed uses

the expert-generated attributes provided with the datasets. These are guaranteed to

be semantically meaningful but may not be discriminative. Discriminative only,

at the other extreme, greedily finds the most discriminative candidates and hopes

for them to be semantic. At each iteration (i.e. active split) among K candidates,

it picks the one that provides the biggest boost in classification performance on a

held-out validation set. Candidates that are not semantic (and hence not attributes)

are dropped in a post-process. As reference, we also show performance if all dis-

criminative candidates are used (semantic or not). This Upper bound performance

depicts the sacrifice in performance one makes in return for semantically meaningful

attributes.
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We see in Figure 4.4 that our proposed method performs significantly better than

either the hand-listed attributes or discriminative only baselines. These conclusions

are stable across all of the datasets and across both SVM and nearest neighbor classi-

fiers. Hand-listed can be viewed as a semantic-only baseline (since the human experts

likely ignored machine-detectability while selecting the attributes) and discriminative

only can be thought of as focusing only on discriminative power and then addressing

semantics after-the-fact. Our proposed approach that balances both these aspects

performs better than either one.

We also evaluate our recommender system as shown in Figure 4.5. We see that

using the recommender allows us to gather more attributes and achieve higher accu-

racy for a fixed number of user iterations. The recommender thus allows our system

to reduce the human e↵ort involved in the discovery process, without sacrificing dis-

criminability.

4.3.2 Image-to-text Generation

Through the interaction with users, our process generates names for each of our

discovered attributes; Figure 4.7 shows some examples. We can use these names to

produce textual annotations for unseen images. We list the name of the attribute

with maximum detection score among all candidates detected on the detected region.

Sample annotation results are shown in Figure 5.5 using the system trained on the

10 random categories subset of the CUB birds dataset. Note that some of these

images belong to categories that our system has never seen before and were not part

of the discovery process at all. Being able to meaningfully annotate unseen images

demonstrates the ability of our system to find human-understandable and machine-
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detectable attributes that can be shared across categories.

We can use the fact that several of the attribute names provided by our users

match the hand-selected attribute names given in the CUB dataset to evaluate the

detection accuracy of our attributes.2 Some attributes that have high accuracy include

blue wing (71.2%), red eye (83.3%), yellow belly (72.5%), red forehead (75.7%), and

white nape (71.7%). Others are less accurate: spotted wing (67.2%), orange leg

(60.3%), white crown (61.7%). In computing these accuracies, we use all positive

examples that have the attribute, and randomly sample the same number of negative

examples. We also observe that our approach is able to discover some interesting

attributes that were not provided in the hand-selected annotations, including “sharp

bill”, and “long/thin leg.”

4.4 Summary

We have presented a novel approach for discovering localized attributes for fine-

grained recognition tasks. Our system generates local attributes that are both dis-

criminative and human understandable, while keeping human e↵ort to a minimum.

Our approach intelligently selects active splits among training images, looking for the

most discriminative local information. Involving a human in the loop, it identifies

semantically meaningful attributes. We propose a recommender system that priori-

tizes likely to be meaningful candidate attributes, thus saving user time. Results on

di↵erent datasets show the advantages of our novel local attribute discovery model

as compared to existing approaches to determining an attribute vocabulary. In fu-

2The hand-selected annotations are not used in our discovery process; we use them only as

ground-truth for measuring detection accuracy.
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ture work, we would like to find links between local attributes and object models, in

order to bring object detection into the loop of discovering localized attributes, such

that both tasks benefit from each other. We would also like to study how to better

incorporate human interactions into recognition techniques.
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Figure 4.3: Illustration of the recommender system. A background mask is estimated

for each image (top row, blue) using GrabCut [104]. The foreground mask is divided

into a 2 ⇥ 2 grid. For each attribute region in the positive images (top row, dark

red), we measure its spatial overlap with each grid cell shown in the second row,

where degree of overlap is represented by colors ranging from dark blue (no overlap)

to dark red (high overlap). Averaging these features across all positive images in the

split (third row) gives a representation for the candidate attribute. We add two extra

dimensions containing the mean and standard deviation of the areas of the selected

regions, creating a 6-D feature vector to train a classifier. This is a positive exemplar

if the candidate is deemed meaningful by the user, and negative otherwise.
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Figure 4.4: Image classification performance on four datasets with SVM and near-

est neighbor (nn) classifiers, and using four di↵erent attribute discovery strategies:

attributes selected by a purely discriminative criterion (Upper bound), a purely

discriminative criterion from which non-meaningful candidates are removed by post-

processing (Discriminative only), attributes produced by a human expert (Hand-

listed), and our proposed approach which includes human interaction (Proposed).

Classification statistics are averaged over 10 trials. The LB dataset does not include

ground truth attributes so we do not evaluate hand-listed attributes on this dataset.
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Figure 4.6: Examples of automatic text generation.
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Figure 4.7: Some local attributes discovered by our approach, along with the semantic

attribute names provided by users (where font size is proportional to number of users

reporting that name), for (a) CUB birds, and (b) LB butterflies. Best viewed on-

screen and in color.
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CHAPTER 5

Detection-based Local Attribute Discovery

In this chapter, we look at man-made fine-grained categories like vehicles, and try to

model local attributes for the given vehicle training images. Segmentation methods

(e.g . GrabCut) often fail to find the correct object boundaries on vehicle images due

to appearance inconsistency (e.g. completely di↵erent appearance between the vehicle

body and the wheels). For example, on a blue car, segmentation-based method fails

because the entire car except the wheels is just one big blue region, so important local

details are lost. Also, GrabCut algorithm often misses the wheels in the foreground

mask, which prevents us from removing background noisy regions. Vehicles are much

more rigid than certain biological objects like birds or butterflies, and vehicle photos

are often taken from canonical viewpoint angles. Taking into account the rigidity of

such object categories helps modeling the visual appearance, and explicitly modeling

the viewpoint angles helps finding robust correspondence between image regions even

if the photos are taken from di↵erent viewpoints.

We propose to use multiple instance SVM to model localized attributes for vehicles

by incorporating viewpoint information, and instead of using segmentation-based

methods, we use detection-based approaches to generate image region hypotheses.

We discuss related work in Section 5.1, and then describe our method in Section 5.2,
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and report results on two vehicle image datasets in Section 5.3.

5.1 Related Work

We have conducted an extensive literature review of visual attribute discovery in

Section 4.1. Here we focus on discussing related work on modeling viewpoints together

with local attributes for man-made objects. Our proposed approach uses latent CRFs

to discover local attributes of vehicles by extending multiple instance SVM models

with pairwise constraints on viewpoint angles.

As with modeling local attributes for biological objects, we treat the attribute

discovery problem as an image region selection problem for man-made objects. These

two di↵erent types of objects exhibit di↵erent properties in their visual appearances.

For example, man-made objects (like vehicles) are typically more rigid, while biolog-

ical objects are deformable. The visual patterns on man-made objects might not be

coherent (e.g . wheels look completely di↵erent with other parts of a vehicle), mean-

ing that segmentation-based approach for generating local attribute candidates might

not work well on this type of object categories. Thus, di↵erent methods for model-

ing local attributes must be designed separately. For example, we apply hierarchical

segmentation to generate region candidates for birds and butterflies when modeling

local attributes. Here we pick vehicles as a representative man-made object category

in our experiments, and use a detection-based method to generate region candidates

for vehicle categories. We design an approach for modeling both the local attributes

and the viewpoint angles at the same time, and show that modeling viewpoint angles

explicitly improves the performance of attribute-based recognition methods.

A number of recent papers on attribute discovery are relevant to our proposed
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approach, but all have important di↵erences. Gu and Ren [48] learn viewpoint an-

gles and vehicle classifiers at the same time, but they do not consider requiring these

models to be semantically-meaningful (at either global or local levels). Our approach

in Chapter 4 learns local attributes in the context of animal species recognition, but

it does not consider multiple viewpoints, and our method relies on multiple features

(contour, shape, color, etc.) with carefully learned weights for each feature chan-

nel. In contrast, we model local attributes and viewpoint angles together in a single

framework, such that the local attribute discovery helps to model the viewpoint an-

gles, and vice versa. Perhaps the most relevant work to ours is that of Sharma et

al . [111], which automatically mines a collection of parts and corresponding templates

for recognizing human attributes and actions. However this method assumes that the

attribute labels for training images are given, while we assume only category labels

are available, and we want to model local attributes and viewpoint angles at the same

time.

5.2 Modeling Localized Attributes via

Multiple Instance SVM with Constraints

We propose a method for automatically discovering discriminative local attributes for

vehicle categories. The discovered collection of local attributes serves as a new image

representation, which improves vehicle classification performance when fused together

with low-level features using the method in [28]. Meanwhile, the discovered attributes

can be assigned semantic meanings, allowing novel cross-modal applications such as

querying vehicles using textual descriptions. We first describe a technique based on

the classic Multiple Instance SVM (MI-SVM) model (Section 5.2.1), and then we
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extend it by introducing pairwise constraints (Section 5.2.2). Finally we describe

how to learn the latent viewpoint angles when these annotations are not available

(Section 5.2.3).

5.2.1 MI-SVMs for Attribute Discovery

Multiple Instance Learning (MIL) is a form of semi-supervised learning in which

training instances are grouped into bags. The ground-truth labels of the individual

instances are unknown, but each bag has a label that is positive if at least one instance

in the bag is positive, and negative if all its instances are negative. Suppose we have

a set of bags {x
I

}. The standard Multiple Instance SVM (MI-SVM) [4] is formulated

as an optimization,

min
w,⇠,b

1

2
kwk2 + C

X

I

⇠
I

(5.1)

s.t. Y
I

·max
i

(w · xi

I

+ b) � 1� ⇠
I

,

where w is a feature weight vector, b is a scalar bias, ⇠
I

is a slack variable corre-

sponding to training bag x
I

, xi

I

is the ith training instance of bag x
I

, and Y
I

is the

ground truth label (+1 or -1) of x
I

. Intuitively, this is the classic SVM max-margin

framework with an additional (soft) constraint that all instances in the negative bags

should be classified as negative, and at least one instance in each positive bag should

be classified as positive.

Our goal is to find local image regions across the training set that are discrimi-

native — that occur often in one vehicle category but not in another. We can apply

the MI-SVM framework to this problem in the following way. Choose a pair of ve-

hicle categories, calling one positive and one negative. We think of each image as
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a bag with a positive or negative label depending on its category, and then sample

many patches from each image to produce instances for each bag. We then solve

equation (5.2), which produces a weight vector but also implicitly chooses positive

instances, and these can be viewed as the set of discriminative regions that we are

interested in. We can repeat this process for many pairs of categories to produce a

set of candidate attributes.

5.2.2 MI-SVMs with Constraints

A problem with the above approach is that discovered regions may not correspond to

the same part of the vehicle, and thus may not have semantic meaning, and also that

more than one region may be selected in each positive image. To address these prob-

lems, we add constraints to encourage spatial consistency, requiring regions to occur

in roughly the same position on the vehicle by adding pairwise spatial constraints

among instances in the positive bag. But since viewpoints vary across images, we

must explicitly model viewpoint in order to compare spatial positions.

Our model. Let v
I

2 V denote the viewpoint label of image (bag) I, where we

assume that V is a small set of possible discrete viewpoints. For now we assume the

viewpoint labels are given; we discuss how to handle unknown viewpoint labels in

Section 5.2.3. We formulate the attribute discovery problem using MI-SVMs, with

additional pairwise spatial constraints among positive instances that encourage the

spatial consistency property, as illustrated in Figure 5.1. Suppose that we knew which

instance in each positive bag should be part of the attribute, and denote this region

x⇤
I

for bag I. Then we could solve a separate MI-SVM problem for each individual
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Figure 5.1: Visualization of SVM models: standard SVM (left), standard MI-SVM

(middle), and our MI-SVM with constraints (right) between instances in each positive

bag. For recognizing vehicles given their viewpoint angles, we define the constraints

such that two selected region candidates must come from consistent locations on the

vehicles.

viewpoint v 2 V ,

min
{w(v)

, ⇠, b

(v)}
1

2
kw(v)k2 + C(v)

X

I2I(v)

⇠
I

(5.2)

s.t. 8I 2 I(v), Y
I

· (w(v) · x⇤
I

+ b(v)) � 1� ⇠
I

,

where I(v) is the set of images having viewpoint label v, i.e. I(v) = {I|v
I

= v}.

Now suppose the weight vectors and biases for each viewpoint were already known,

so that we need to estimate the x⇤
I

for each bag I. We want to do this in a way that

encourages spatial consistency. We pose this problem as inference on a Conditional

Random Field (CRF) [70]. Let l
I

be a scalar variable which takes a value from the

region indices in image I. We define an energy function to measure the compatibility

of a given assignment of variables to l
I

,

E({l
I

}|{v
I

}) =
X

I

�(l
I

|v
I

) +
X

I,J

�(l
I

, l
J

|v
I

, v
J

), (5.3)

where the first set of terms in the summation measures how well the selected regions
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are modeled by the MI-SVM,

�(l
I

|v
I

) = �(w(vI) · xlI
I

+ b(vI)),

and the pairwise terms encourage positive regions to be at about the same spatial

position on the car. If the viewpoint labels between two images are the same, then

measuring this distance is a simple matter of comparing image coordinates. If the

labels are di↵erent, then we need to apply a transformation so that the two coordinate

systems are comparable. In particular, our pairwise function is 1,

�(l
I

, l
J

|v
I

, v
J

) =

8
>>><

>>>:

kµ(l
I

)� µ(l
J

)k2, if v
I

= v
J

kHvJ
vI
µ(l

I

)� µ(l
J

)k2, if v
I

6= v
J

,

where µ(l
I

) denotes the spatial position of region l
I

relative to the vehicle center, and

HvJ
vI

is a homography matrix. We estimate the homography between two viewpoints

by extracting SIFT features [79] from the training images having each viewpoint

and running RANSAC [43] on feature correspondences. Finally, to estimate the best

region x⇤
I

for each image I, we minimize equation (5.3) through CRF inference,

{x⇤
I

} = argmin
{lI}

E({l
I

}|{v
I

}). (5.4)

Of course, in our problem we know neither the SVM parameters or the region

selections. We thus solve these iteratively, first finding the weights and biases in

equation (5.2) by holding the region variables fixed, and then solve for the region

variables in equation (5.4) while holding the SVM parameters fixed. The result is a

collection of region selections for all positive training images.

1In order to minimize the computational cost, our distance function is not defined to be sym-

metric when viewpoint angles of two regions are di↵erent. One possible solution is to compute two

transformation matrices HvJ
vI and HvI

vJ , and take the average of two distances from both directions.
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Generating regions. We have not yet addressed how to generate the instances

within each bag. Although we could randomly sample patches, in practice this cre-

ates many irrelevant regions. We thus use an approach similar to [82], applying a

pre-trained deformable part-based model car detector [39] on the training images to

produce multiple detections with part locations. We then sample from the part detec-

tion bounding boxes to generate region candidates. This is faster than the hierarchical

segmentation in [32] and produces regions that are more likely to be on the vehicles.

Generating multiple attributes. The above procedure can be used to find the

best attribute for a given pair of categories, but in practice we want to generate

multiple attribute hypotheses. To do this, we first find the best attribute by solving

for {x⇤
I

} using the iterative procedure described above. To find a second attribute, we

modify the unary term of equation (5.3) so that a large constant penalty is paid for

selecting an l
I

that was chosen as part of the earlier attribute. In our experiments, we

repeat this procedure 5 times to produce 5 attribute candidates per pair of categories.

5.2.3 Recovering Viewpoint Angles

We now consider the case in which the viewpoint labels {v
I

} are not available ahead

of time, so we need to estimate the viewpoint label of each image in addition to

the local attributes. We first initialize the viewpoint labels with K-means clustering

using global image gradient features (e.g . dense SIFT [79]) with K = |V|. Then,

after each new attribute is discovered, we update the viewpoint label of each image.

To do this, we apply the attribute detectors that have been found so far across all

viewpoint angles on the discovered region, choose the best detector, and assign that

viewpoint to the region. For all of the discovered regions in an image, we collect all
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such viewpoint predictions, and use these to vote for the viewpoint of the image.

5.3 Experiments

We consider two datasets in our experiments: Stanford cars [115] with 14 car cat-

egories (and 68 training and 34 test images in each category); and INRIA vehi-

cles [68] with 29 categories and a total of 10,000 images equally split into training

and test sets. There is viewpoint angle bias in both datasets (e.g . images in Stanford

cars are mostly from 45� and 135�). In Stanford cars, each category consists of car

images of the same make, model and year, and bounding box annotations and 8 dis-

crete viewpoint labels are also provided. The INRIA dataset does not have viewpoint

labels, and the images in a category are only guaranteed to be the same make and

model, not necessarily from the same year.

On both datasets, we extract dense SIFT and color histogram features for each

region candidate and compute corresponding Fisher vectors using 32D Gaussian mix-

ture models. We also extract these features on the whole image with a three-layer

spatial pyramid as a baseline. Note that [32] uses hierarchical segmentation to gen-

erate image region candidates, and di↵erent types of features (shape, contour, color,

gradient, etc) are extracted from the segments. In our case, since the sampled regions

are all rectangles, we only use gradient and color features.

5.3.1 Single Attributes

To validate the region pooling parameters and test how our sampling strategy is re-

lated to accuracy, we test single region performance, where we train multi-class linear

SVM classifiers on all image region features, using category labels as training labels
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Figure 5.2: Relationship between region size and (solid line) the performance of image

classification using single regions, and (dashed line) the semantic meaningfulness as

judged by humans, for Stanford (left) and INRIA (right).

for classifying vehicle categories. We observe that the performance for classifying sin-

gle regions decreases as region size decreases (Figure 5.2). This make intuitive sense

because discriminative information is lost when the image is broken into small pieces.

For example, it is di�cult to tell the di↵erence between two vehicle categories if only

parts of the wheels are given.

We also wanted to measure the relationship between region size and whether or

not a region is semantically meaningful. To do this, we conducted a simple experiment

on Mechanical Turk where image regions of varying sizes were shown, and users were

asked to rate (on a scale of 1-10) whether the region corresponded to a meaningful

part of the vehicle or not. Results are also shown in Figure 5.2. We found that

semantic meaning su↵ers if regions are too big or too small: too small cannot capture

useful image content, while too big loses interpretability and locality of attributes.

Based on these results, we set the region size for the remainder of the experiments

in order to maximize the semantic meaningfulness of our image region candidates,
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generating 50⇥ 50 regions for Stanford and 70⇥ 70 regions for INRIA.

5.3.2 Multiple Attributes

To use multiple attributes for classification, we aggregate the discovered attributes

and use them to build a new representation for each training image. To do this, we

apply each attribute classifier on a held-out validation set, and collect all attribute

detection scores. We build a T = (K⇥A) table, where K is the number of categories

and A is the number of attributes. If more than half of the images in a category

k have attribute a, then we set T (k, a) = 1, otherwise to 0. We use T for nearest

neighbor classification.

Our framework can be used to generate multiple attributes by learning MI-SVM on

di↵erent category pairs and by forcing candidate regions not to overlap (Chapter 5.2).

However not all such attribute candidates are beneficial to the overall classification

performance, so we use an attribute selection method similar to [32] to select the

subset of best ones for classification. When a new attribute is generated, we keep it if

it improves the overall classification accuracy on a held-out validation set; otherwise

it is dropped.

Semantic filtering and naming. We post process these attribute candidates to

name them using human feedback from Amazon Mechanical Turk. We present the

attribute visualizations generated from each viewpoint to human subjects with their

cropped bounding boxes, and put them in a single image gallery if they correspond to

the same attribute. Specifically, we asked each subject for the part name, a descriptive

word, and their confidence score (on a 1-5 scale) as well. We remove the non-semantic

ones if the average confidence score is lower than 3. Every candidate was shown to

100



0 10 20 30 40 5010

15

20

25

#Attributes

Ac
cu

ra
cy

(%
)

Stanford Cars Dataset

 

 

GT Viewpoint
Latent Viewpoint
K−means Viewpoint
No Viewpoint

0 10 20 30 40 507

8

9

10

11

12

13

14

15

#Attributes

Ac
cu

ra
cy

(%
)

INRIA Vehicles Dataset

 

 

Latent Viewpoint
K−means Viewpoint
No Viewpoint

Figure 5.3: Classification accuracy with di↵erent numbers of discovered attributes

and di↵erent techniques for handling viewpoints, for Stanford (left) and INRIA (right)

datasets.

5 human users, and the names of the attributes were determined by the majority of

the feedbacks.

Category classification results. We studied classification accuracy according to

number of detected attributes, as shown in Figure 5.3. We also compare several at-

tribute selection methods requiring di↵erent degrees of viewpoint supervision. GT

Viewpoint uses the ground truth viewpoint labels in the training set using our tech-

nique of Chapter 5.2.2. No Viewpoint completely ignores viewpoint information in

the vehicle discovery process (i.e. all images are assumed to have the same viewpoint

label). K-means Viewpoint runs K-means using global image features to assign

initial viewpoint labels without any further update (i.e. performs only the initial-

ization phase of Chapter 5.2.3). Finally, Latent Viewpoint uses our full model,

treating viewpoint labels as unknown latent variables and applying the method in

Chapter 5.2.3. From the figure, we see that incorporating viewpoints into the model

helps classification accuracy across any number of attributes. The best results are
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achieved when viewpoint is available in ground truth, but our technique that can

infer viewpoints automatically performs better than either of the simpler baselines.

Note that we use 8 viewpoints in these experiments and the INRIA vehicles dataset

does not have ground truth viewpoint annotations, so we only report results for the

other three methods.

Combining with low level features. We achieve better results by combining the

attribute features with low-level Fisher vector features [28]. We use a simple blending

scheme on the normalized scores of each test image as S = ↵·S
low

+(1�↵)·S
attr

, where

S
attr

is the classification score from attributes and S
low

is the score from the Fisher

vectors. We choose the best ↵ using a held-out validation set. On both datasets, we

find that combining attributes and low-level features improves classification accuracy

compared with just using the low-level features, with an increase from 88.2% to

89.57% on Stanford cars and 33.58% to 34.54% on INRIA, both using 50 attributes.

(Note that low-level results on the INRIA set reported in [68] are higher, but they

use a much larger mixture model to compute Fisher vectors, so the numbers are not

directly comparable.)

Qualitative Results. Figure 5.4 shows sample local attributes learned using our

technique applied on the Stanford cars dataset. These semantic and discriminative vi-

sual attributes can be used for automatic image annotation on new images. Figure 5.5

shows sample tags produced for test images on the Stanford cars dataset.
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(a) head light,

fender, red, red

and blue

(b) wheel, silver

wheel cup, black

tire

(c) back wheel,

tire, white, right

headlight

(d) window,

trunk, rear,

black

(e) headlight,

front light,

square

(f) side door, sil-

ver wheel cup,

black tire

(g) front wheel,

black, silver,

right headlight

(h) hood, wind-

shield, bumper,

silver, blue

(i) front wheel,

fender, red,

white

(j) rear head-

light, back,

black window

Figure 5.4: Examples of automatically generated local attributes for the Stanford

cars dataset. Each panel represents one discovered local attribute for a particular

viewpoint of the vehicle category, with names coming from Mechanical Turk users.

5.4 Summary

We have presented a novel approach for discovering local visual attributes for vehicle

categories and for modeling viewpoint classes at the same time. We have performed

systematic experimental evaluations to demonstrate our discovered attributes help to

improve baseline classification methods. We showed that our discovered attributes

are both discriminative and semantically meaningful, leveraging user feedback on the

machine-generated attribute candidates. In future work, we will explore more useful

applications of local attributes (e.g . image retrieval, automatically caption generation,

etc.) and will study incorporating local attributes into vehicle detectors.
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Figure 5.5: Examples of vehicle annotation results on new images.
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CHAPTER 6

Multimodal Image Modeling

So far we have applied CRF models to capture di↵erent structured information (e.g .

human pose, image local regions). However, the scale of these problems is usually

constrained to small training and test datasets. In this chapter, we investigate how to

model multimodal information (e.g . visual, text, GPS locations, etc.) on the web using

CRF models. We propose multimodal latent CRF for organizing image collections.

We review and discuss existing work in Section 6.1, and then we describe our approach

in Section 6.2. We show experimental results in Section 6.3.

There are billions of images on the web. For example, the daily photo uploads

on Flickr.com are more than one million, and on Facebook, this number is more

than 350 million [1]. To help users organize and browse photos at such a large scale,

people usually use clustering techniques. Web photos do not appear alone: metadata

such as image captions, text tags, GPS tags are all useful information that can be

used to improve clustering performance. However, these metadata are usually sparse

and noisy. For example, only about 80% of randomly downloaded Flickr images

have been annotated with tags, and only 5% to 10% Flickr images have GPS tags.

How to incorporate these sparse and noisy metadata information into the clustering

framework is still an open question.

105



6.1 Related Work

We consider using conditional random fields for organizing multimodal web images

automatically or semi-automatically. There is a vast literature on unsupervised and

semi-supervised learning in the data mining community, and these techniques have

been applied to organizing photos in a variety of contexts [44,45,77,80,140,143,146].

Two research threads are most closely related to this thesis: multimodal modeling in

image collections, and constrained clustering.

6.1.1 Multimodal Modeling

McAuley and Leskovec [85] use relational image metadata (social connections between

photographers) to model pairwise relations between images, and they apply a struc-

tural learning framework to solve the resulting labeling problem. While similar to our

work in spirit, their formulation does not allow for missing metadata, and does not

incorporate multimodal features (and does not use visual features at all). Rohrbach

et al [103] propose a framework to recognize human activities in videos using both

visual and detailed textual descriptions. Guillaumin et al [49] use a semi-supervised

classifier on visual and text features for image classification; they allow missing class

labels on training images, but do not allow for sparse features (they assume that all

training images have text tags). In contrast, our model allows missing features in any

modality channel, and learns the concepts in a loosely supervised manner (using just

a small labeled training dataset to learn the parameters of our CRF).

Bekkerman and Jeon [9] perform unsupervised multimodal learning for visual

features and text, but similarly do not attempt to handle sparse or missing features.
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Perhaps most relevant to our work is that of Srivastava and Salakhutdinov [114],

who propose a multimodal learning method using deep belief networks. Their work

allows for missing modalities on training instances by a sampling approach, but their

technique can be expensive because it requires many di↵erent layers and also a lot

of parameters. On the other hand, we propose a lightweight unsupervised learning

framework which discovers clusters automatically, but that can still be used to build

discriminative classifiers to predict missing modalities on new unseen images.

6.1.2 Constrained Clustering

Several papers incorporate constraints into classical clustering algorithms like K-

means. Our approach can be thought of as constrained clustering, similar to HMRF-

Kmeans [8] and related work [77,80,128], but there are key di↵erences in motivation

and formulation. We explicitly deal with missing features (which are quite common

in web images) while these existing methods do not consider this problem. Intu-

itively, our framework only performs K-means updates (the “M-step”) for one feature

channel; when this type of feature is missing on some instances, K-means updates

are calculated based on a subset of the network. Our work is related to Wagsta↵

et al [129] and Basu et al [8] who add “hard” constraints to the standard K-means

framework, including “must-link” and “cannot-link” constraints between data points.

In our application, where metadata is noisy and often inaccurate or ambiguous, such

hard constraints are too strong; we instead use “soft” constraints that encourage

instances to link together without introducing rigid requirements. Our models also

allow di↵erent feature types in the pairwise constraints (e.g. some constraints may be

defined in terms of tag relations, while others are defined using GPS, etc).
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Summary. Multimodal image modeling is an important topic in both the computer

vision and multimedia research communities. We propose a general framework using

latent conditional random fields for learning semantic concepts from multimodal web

image data in two supervision modes (i.e. weak supervision and loose supervision).

Our approach directly generalizes the classical K-means method, and can incorporate

arbitrary modality features altogether in a single framework. The proposed CRF

framework models the relations between images through the similarity relations on

di↵erent modality feature channels. A link is added between two image instances if

they are available on one or more common feature types. Compared to the above

relevant research literature, our model is lightweight, generic, and mathematically

principled. Our model not only helps organizing and browsing web images, but could

also enable interesting applications like image annotation, image recommendation,

etc.

6.2 Loosely Supervised Multimodal Learning

We now present our approach for loosely supervised clustering in datasets with multi-

modal, sparse features. We assume that there are multiple feature types that are not

comparable with one another, and observed values for some of these features on each

instance in our dataset. For example, for online photos we may have visual features,

text tags, and geotags, for a total of three feature modalities, and visual features are

observable in all images but the others are available on just a subset. Our goal is to

jointly consider all of this sparse and heterogeneous evidence when clustering.
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6.2.1 Constrained Clustering Framework

We can think of our approach as a generalization of the classic K-means clustering

algorithm. In K-means, we are given a dataset of instances X = {x1, ..., xN

}, where

each instance is a point in a d-dimensional space, x
i

2 Rd. Our goal is to assign one

of K labels to each instance, i.e. to choose y
i

2 [1, ..., K] for each instance x
i

, and to

estimate K cluster centers µ = {µ1, ..., µK

}, so as to minimize an objective function

measuring the total distance of points from assigned centroids,

min
µ,y

NX

i=1

KX

k=1

(y
i

= k) kx
i

� µ
k

k2, (6.1)

where y = (y1, ..., yN) and (·) is an indicator function that is 1 if the given condition

is true and 0 otherwise. Note that this formulation implicitly assumes that each

instance can be represented by a point in a d-dimensional space, and that Euclidean

distances in this space are meaningful.

In our approach, we assume that we have M di↵erent types of features, only a

subset of which are observable in any given instance. Our dataset thus consists of a

set of N instances, X = {x1, ..., xN

}, where each x
i

= (x1
i

, ..., xM

i

), and a given xm

i

is

either a feature vector or ; to indicate a missing value. We treat one of these as the

primary feature (we discuss how to choose the primary feature below) and consider

the others as soft constraints, which tie together instances having similar values.

We assume without loss of generality that the primary features have index m = 1.

Any of these feature types (including primary) may be missing on a given instance.

An illustration of our approach is shown in Figure 6.1. Now we can generalize the

K-means energy function in equation (6.1) as,

min
µ,y

E({y
i

}|{x
i

}), (6.2)
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with

E({y
i

}|{x
i

}) =
NX

i=1

KX

k=1

(y
i

= k) · ↵(x1
i

, µ
k

) (6.3)

+
MX

m=2

NX

i=1

NX

j=1

�
m

(xm

i

, xm

j

) · (y
i

6= y
j

),

and where ↵(·, ·) is a distance function that defaults to 0 if a primary feature is

missing,

↵(x1
i

, µ
k

) = (x1
i

6= ;) · kx1
i

� µ
k

k2,

and �
m

(·, ·) is a function that measures the similarity between them-th (non-primary)

feature of two instances (described below), or is 0 if one or both of the features are

missing. Intuitively, the first summation of this objective function is identical to that

of the objective function of K-means in equation (6.1), penalizing distance from the

primary features to the cluster centroids. If a primary feature is missing in a given

instance, it does not contribute to the objective function (since any assigned label has

equal cost). In the special case that there is exactly one feature type and it is always

observable, equation (6.3) is equivalent to simple K-means in equation (6.1). The

non-primary features add soft constraints through the second set of summations in

equation (6.3), penalizing pairs of instances from being assigned to di↵erent clusters

if they have similar features.

The objective function in equation (6.3) is a Latent Conditional Random Field

model. Each instance (image) is a node in the CRF, and the goal is to label each

node with a cluster identifier. The primary features define unary potentials, which

give a cost for assigning a given node to each centroid, or a uniform distribution if the

primary feature is missing. As in K-means, the cluster centroids are latent variables

that must be estimated from data. Edges connect together pairs of instances where
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non-primary feature are available, with pairwise potentials given by the � functions.

To perform clustering in this framework, we must perform inference on the latent

CRF. This is an optimization problem with two sets of unknown variables: the cluster

centers µ and the cluster assignments y. We use an EM-like coordinate descent

algorithm to solve this problem, iteratively applying the following steps:

1. In the E-step, we fix µ and (approximately) solve for y by performing discrete

optimization on the CRF using tree-reweighted message passing (TRW-S) [65].

2. In the M-step, we fix y, and solve for each µ
k

with simple maximum-likelihood

estimation.

Note that these two steps are the familiar algorithm used in K-means, except that

the E-step here involves jointly assigning cluster labels to the instances by performing

inference on a CRF (instead of simply assigning each instance to the nearest cluster

center as in K-means). The M-step is identical to that of K-means, except that here

we ignore instances with missing primary features.

We can use this framework in di↵erent ways, depending on the amount of infor-

mation available in a given application. In a weakly supervised setting, we assume

that for some pairs of instances (in a held-out set), we know whether each pair be-

longs to the same class or a di↵erent class. We use these labels to learn the pairwise

potentials as described in Chapter 6.2.2. We can learn a distance metric even when

the constraint features are available but the primary feature is missing, or when the

labeled set is in a di↵erent domain than the clustering application at hand. In a

loosely supervised setting, we make the stronger assumption that a small subset of

instances have ground-truth class labels, such that we can estimate the centroids us-
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ing the small subset, and fix the centroid labels in that subset while solving for the

rest.

6.2.2 Learning Pairwise Potentials

The clustering framework in Chapter 6.2.1 requires pairwise potential functions �
m

(·, ·)

to evaluate the similarity between two instances according to each feature type. These

functions are critically important to clustering performance and thus we learn their

parameters automatically. We define the pairwise potentials for each feature type m

to have the following parametric form,

�
m

(xm

i

, xm

j

)= (xm

i

6=; ^ xm

j

6=;) · (w
m

· d
m

(xm

i

, xm

j

) + b), (6.4)

where d
m

(·, ·) is a (learned) distance function for the given feature type, w
m

and b are

scalar weight and bias terms, and the indicator function ensures �
m

(·, ·) is clamped to

0 if either feature is missing. Learning the potential functions now involves estimating

the distance function d
m

(·, ·) for each feature type, and the weight and bias terms w
m

and b; we estimate these in two separate steps.

Learning the distance functions. We assume that the distance functions are

Mahalanobis distances,

d
m

(xm

i

, xm

j

) = (xm

i

� xm

j

)TA
m

(xm

i

� xm

j

),

and thus we need only to estimate the matrices A
m

. To do this, we use Information

Theoretic Metric Learning (ITML) [25] to learn these matrices from pairwise super-

vision on the small labeled training data. For increased robustness to noise, we used

diagonal Mahalanobis matrices.
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Learning the potential function parameters. We wish to jointly estimate the

M � 1 feature weight parameters w = (w2, ..., wM

) and the bias term b in equa-

tion (6.4). We formulate this as a standard margin-rescaled structural SVM learn-

ing problem [126]. Let y
i

and ỹ
i

be the ground truth and predicted label of x
i

,

E({y
i

}|{x
i

}) be the energy when the labelings are {y
i

} (in equation (6.3)); we mini-

mize,

min
�,w,b

�kwk2 + ⇠,

such that,

E({ỹ
i

}|{x
i

})� E({y
i

}|{x
i

}) � �({ỹ
i

}, {y
i

})� ⇠,

8{ỹ
i

} 6= {y
i

}, w � 0, ⇠ � 0.

We define our loss function using number of incorrect pairs,

�({ỹ
i

}, {y
i

}) =
NX

i=1

NX

j=1

ỹi=ỹj^yi 6=yj_ỹi 6=ỹj^yi=yj ;

in other words, for each pair of instances in the dataset, we count how many of

them were incorrectly assigned to di↵erent clusters and how many were incorrectly

assigned to the same cluster. This definition of loss is the Rand Index [101], a popular

evaluation metric in the clustering literature. We chose to use this metric (as opposed

to other popular metrics like purity) because it allows the loss function to decouple

into independent optimizations over each data point. We can then perform loss-

augmented inference using the TRW-S algorithm [65] at training time, allowing for

e�cient inference in the inner loop of structured SVM training.
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6.3 Experiments

We demonstrate our clustering method on four datasets collected from Flickr, three of

which have ground-truth to allow for quantitative evaluation. In the fourth dataset,

we show how our technique can be used to discover structure in large collections of

images for which no ground truth exists.

6.3.1 Applications and Datasets

We use four datasets of images from Flickr collected using the public API. To test

the robustness of our approach in di↵erent settings, each of these datasets targets a

di↵erent application of unsupervised clustering, and uses di↵erent feature types and

ground truth collected in varying ways.

Landmarks. Our first dataset contains images from the ten most-photographed

landmarks on Flickr, using the dataset from [76]. That paper clusters geo-tags to

find highly-photographed places and learns discriminative classifiers for each of these

landmarks. Here we test if our method can separate the landmarks in a less supervised

manner, which could be useful in organizing large tourist photo collections around

travel destinations. In this dataset we use only image features and text tags; we do

not use GPS features because they were used to define the ground truth classes. We

hide the ground truth, apply our clustering framework on image and tag features,

and then compare the clustered results with the ideal clustering induced by the class

labels. This Landmarks dataset includes 8,814 images.

Groups. Sites like Flickr let users contribute their photos to groups about user-

defined topics. These groups have rich and varied themes, and the ability to categorize
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photos into groups automatically could be useful to help users organize their photos.

We collected 1,000 images from each of 10 Flickr groups related to the following topics:

aquarium, boat, bonsai, cars, Christmas, fireworks, food, penguins, skyscrapers, and

sunsets. (These are the topics shown in Fig. 1 of [132]; unfortunately those authors

could not share their dataset, so we found Flickr groups corresponding to the same

topics and gathered our own images). We use visual, text, and geo-tag features in

this Groups dataset.

Activities. We are also interested in clustering images according to human activities

like attending a game, going to a museum, taking a hike, etc. Since these activities

correspond to higher level semantics than simple actions like walking, running, etc.,

they are di�cult to classify using visual features alone. (For instance, a picture of cars

could be “car racing” if the cars are moving or “car show” if they are stationary, but

the di↵erence in visual appearance is subtle.) We thus use our multimodal cluster-

ing algorithm to incorporate visual, textual, and GPS features into this organization

process. We collected two activity-related datasets. Sport consists of 10,000 images

related to sporting events, which we collected by crawling 10 types of Flickr groups

(American football, baseball, basketball, hockey, horse racing, marathons, NASCAR,

football (soccer), swimming, tennis). These group labels give ground truth for evalu-

ation. Activity includes about 30,000 random images from Flickr, which we use to

qualitatively test our approach’s ability to discover activities in unlabeled data. Here

we use a large number of clusters (K = 1000) so that we can find coherent clusters

despite the large number of outlier images.

In collecting the above datasets, we were careful to prevent “leaks” between class

labels and the features used for clustering. For example, we did not use text features
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Purity:

Visual features Text features Visual+Text Proposed Proposed

(V+T) (V+T+G)

Landmarks 0.1677± 0.0134 0.3224± 0.0335 0.3449± 0.0383 0.4060 ± 0.0279 —

Groups 0.2508± 0.0097 0.3696± 0.0263 0.3955± 0.0341 0.4395± 0.0389 0.4450 ±0.0353

Sport 0.1483± 0.0101 0.3454± 0.0386 0.3524± 0.0387 0.3713± 0.0309 0.3965 ±0.0182

Inverse purity:

Landmarks 0.3163± 0.0180 0.4907± 0.0344 0.5297± 0.0227 0.5611 ± 0.0210 —

Groups 0.4066± 0.0448 0.5893± 0.0275 0.5971± 0.0310 0.6010± 0.0322 0.6336 ±0.0152

Sport 0.3707± 0.0411 0.6593± 0.0244 0.6789± 0.0175 0.6931± 0.0173 0.7062 ±0.0190

Table 6.1: Purity (top) and Inverse Purity (bottom) on three datasets with K = 10

clusters. Means and standard deviations are over 5 trials. (GPS information is

not available for Landmarks.) Our multimodal approach significantly outperforms

single modality baselines and combined feature baselines, both in terms of purity and

inverse purity.

to define class labels, instead relying on geo-tags and group assignments. We also

prevented any single photographer from dominating the datasets by sampling at most

5 photos from any single user. In general, about 80% of images have at least one text

tag and about 10% of images have a geo-tag.

6.3.2 Features

On Landmarks, Groups, and Sport, we represent each image using histograms

of visual words (using SIFT descriptors and a visual vocabulary of 500 words built

using K-means). For the text features, we apply PCA on the binary tag occurrence

vectors to reduce the dimensionality to 200. We learn a Mahalanobis distance for

the text features using the method in Chapter 6.2.2 on the lower-dimensional space.
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For geo-tags, we use chord lengths on the sphere as the distance between two GPS

coordinates. On the Activity dataset, we compute high-level features using object

bank [75], and use image captions as the text features. Stop words are removed, the

remaining words are stemmed, and we represent the text using binary occurrence

vectors and again apply PCA to reduce the dimensionality to 200.

6.3.3 Results

As mentioned in Chapter 6.2.1, our framework can be applied in di↵erent ways de-

pending on the type of ground truth available. We first evaluate under weak su-

pervision, which assumes that we have pairs of exemplars which we know belong to

either the same or di↵erent classes, and we use these to learn the pairwise distances

and potential functions. We also evaluate under loose supervision, which makes the

stronger assumption that we have some exemplars with ground-truth class labels, so

that the primary feature centroids can also be initialized.

Weak supervision. Table 6.1 presents quantitative results for three datasets un-

der weak supervision, using purity and inverse purity [2] as the evaluation metrics.

For example, to compute purity, we calculate the percentage of instances within each

estimated cluster that agree with the majority ground truth label of those instances.

These numbers are averaged across all clusters to compute a final purity score. Math-

ematically, the purity score is defined as:

Purity =
X

i

|C
i

|
n

max
j

|C
i

\ L
j

|
|C

i

|

where C
i

is a predicted cluster and L
j

is a ground truth category. Similarly, the

117



inverse purity score is defined as

Inverse Purity =
X

i

|L
i

|
n

max
j

|L
i

\ C
j

|
|L

i

|

The table compares our method against several baselines: Visual features runs

K-means on visual features only, Text features performs K-means using text features

only, Visual+Text concatenates both features and performs K-means. Photos with-

out tags are assigned random tags. Proposed (V+T) uses our approach with visual

and text features, and Proposed (V+T+G) uses our approach with visual, text and

GPS features. In each case we run 5 trials and report means and standard deviations,

since results are non-deterministic due to the random initialization.

As shown in the table, our proposed method to incorporate (weak, sparse, noisy)

multimodal data outperforms the baselines significantly. Visual features alone work

relatively poorly (e.g . purity of about 0.17 for Landmarks), while text features are

much more informative (0.32). Combining text and visual features together by simply

appending the feature vectors and running K-means improves results slightly (0.34),

while combining visual and text features in our framework significantly outperforms

all of these baselines (0.41). Much of this improvement may come from our technique’s

ability to better handle photos that do not have text tags (about 20% of photos): when

we exclude photos having no tags, the text-only K-means baseline increases to 0.3705

for Landmarks and 0.4567 for Groups. Finally, adding GPS features results in a

modest additional gain.

We use text as the primary feature in the above experiments. We have found that

the choice of primary feature is important, due to the di↵erent roles that the unary

and pairwise potentials play in the constrained clustering framework. Intuitively, the
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pairwise constraints only depend on whether the labelings of two neighbors are the

same, while the unary potentials encourage each node to explicitly select one of the K

labels. It is thus easier for a labeling of the nodes to minimize the pairwise cost than

the unary cost. To understand this better, we tested each of the two feature types

(visual and text) in isolation as unary or pairwise constraints. Results of using only

a unary term were already presented above, in the first two columns of Table 6.1;

we tested the pairwise potentials in isolation by fixing the unary potentials to be

uninformative uniform distributions. On Landmarks, switching visual features from

primary to pairwise features causes purity to change from 0.1677 to 0.1462, a drop of

13%, while switching text features from primary to pairwise drops the purity by 31%

from 0.3224 to 0.2223. This result suggests that we should select the “strongest,”

most informative feature as the primary.

Figure 6.2 studies how sparsity of primary and secondary and text and visual

features a↵ects results, by hiding features of varying numbers of images. For each

dataset, the left plot compares results of using a subset of text features as the primary

and no constraint features (red), with using all visual features as primary and subsets

of text features as constraints (blue). The red line is thus the same as simple K-

means, where images without text features are randomly assigned to a cluster. The

right plot shows a similar comparison but with the roles of the text and visual features

swapped. We see of course that more observations lead to better performance, with

best results when using all available text as primary features and all visual features

as constraints. But the results also highlight the flexibility of our approach, showing

that multi-modal features (blue lines) significantly improve performance over a single

feature type (red lines), even when only a small percentage of photos have the feature.
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Loose supervision. We used small labeled subsets of di↵erent sizes to evaluate

the loosely supervised paradigm, and evaluate using classification accuracy. We used

linear SVMs trained on visual and text features as baseline methods, with the classifier

parameters chosen according to 5-fold cross validation on the training data. Figure 6.3

shows that our proposed loosely supervised method outperforms SVM classifiers given

the same amount of supervision, especially when the available training data is only a

small percentage of the entire dataset. For instance, on Landmarks, our technique

can achieve about 54% classification accuracy (relative to 10% random baseline) with

1,000 labeled exemplars, versus just 33% for a trained SVM using the same features

and training set.

Qualitative results. Figure 6.4 presents sample clustering results for the Land-

marks, where in each group we show the images closest to the cluster centroid and the

most frequent tags in the cluster. Figure 6.5 presents sample clusters from our Ac-

tivity dataset of 30,000 images, showing that the algorithm has discovered intuitively

meaningful activity and event clusters like car shows, wildlife, festivals, beaches, etc.

Since we do not have labeled ground truth for this dataset, we simply used the learned

parameters from Sport.

6.4 Summary

We proposed a multimodal image clustering framework that incorporates both visual

features and sparse, noisy metadata typical of web images. Our approach is loosely

supervised, and is reminiscent of the standard K-means algorithm: one feature is

used as the primary feature in K-means-style updates, while other features are incor-

porated as pairwise constraints. The proposed approach is flexible and can be applied
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under di↵erent degrees of supervision, including when no training data is available

at all, and when features are missing. In future work, we plan to incorporate other

types of constraints in the graphical model, and to apply our approach to various

applications (e.g . automatic image annotation and recommendation).
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(a) Standard K-means (b) Adding pairwise constraints

(c) Constrained K-means

Figure 6.1: Illustration of our constrained clustering framework. (a) Standard K-

means has only one feature type; (b) we add more feature types, which induce pair-

wise soft constraints between instances; (c) CRF inference balances evidence from all

features in performing the clustering.
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(a) Landmarks (b) Groups

Figure 6.2: Clustering performance as a function of number of images with di↵erent

types of features. Red lines use primary features for only a subset of images and

do not use constraints (i.e. as in classic K-means). Blue lines use our multimodal

clustering framework, incorporating primary features for all images and a subset of

images with constraint features. For each dataset, purity in the left plot is calculated

using all images, while in the right plot it is calculated using images having tags.
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Figure 6.3: Classification performance comparisons with loose supervision on train-

ing sets of increasing sizes, using Landmarks (left), Groups (middle), and Sport

(right). Linear SVM baseline is trained on concatenated visual and text features.
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Figure 6.4: Sample landmark clusters discovered automatically by our algorithm.
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Figure 6.5: Some activities discovered by our algorithm.
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CHAPTER 7

Conclusion

In this thesis, we have studied di↵erent types of object recognition problems, and

used CRF as a common framework to abstract the problems and derive the formula-

tions. We studied how to learn a CRF discriminatively, and how to perform e�cient

inference on di↵erent graph structures. Specifically, we looked at three object recog-

nition applications (i.e. human pose estimation, fine-grained object recognition, and

multimodal image modeling) in detail. Each of them comes with di↵erent supervision

levels, and with di↵erent types of structures. We performed systematic evaluations

on standard benchmark datasets and on real world data as well.

The major contribution of the thesis is that we proposed conditional random field

models for di↵erent structured object recognition problems at di↵erent supervision

levels. These applications are representative, in that they all have rich structured

information that captures di↵erent aspects (e.g . object part structure, image region

structure, and structure of an image collection) of the recognition problems. For

example, in human pose estimation, we assumed each human body can be decomposed

into a set of key joints (or parts), and model the geometric constraints among these

parts using a tree structure. In fine-grained recognition, we proposed a novel image

representation called “local attributes”, and proposed an attribute discovery workflow
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based on a latent CRF that captures pairwise relations between image regions. We

also used a latent CRF to model the structure of an image collection for automatic

photo organization and browsing. The latent variables are the K-means centroids,

and the graph structure of the CRF is defined by the relations between pairs of images

on di↵erent modality channels.

In Chapter 3, we introduced a multi-layer composite representation of the hu-

man body structure for human pose estimation tasks. Our model is defined using

a CRF, and generalizes a common collection of pose estimation models using single

tree structures. We formulated the problem of learning the model parameters using a

structural SVM, and train the multi-layer model in a fully supervised manner (i.e. all

key body joint locations are known in the training process). We explored the nature

of human pose structures, and explicitly used a tree structure for the submodel at

each individual layer. We also used a tree-structured decomposition constraint to

“link” these layers together. Thus, our multi-layer composite model can be naturally

decomposed into multiple trees; at testing time, we used dual-decomposition as a

linear program relaxation method to optimize the inference objective function.

The above CRF models benefit from fully annotated training exemplars at train-

ing time. However, there might be useful latent information that could be used to

solve the given task. In Chapter 4 and Chapter 5, we proposed to discover such

latent information for fine-grained recognition tasks using latent conditional random

field models. We noticed that image representation is an important aspect for solving

fine-grained recognition problems. The existing “attribute-based” approaches mainly

handle global attributes, and cannot capture the di↵erences between fine-grained cate-

gories very well, in that the discriminative information between fine-grained categories
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are mostly from local regions. Thus we proposed to treat these local, discriminative

image regions as latent information, with the assumption that class label for the

training categories are given.

In Chapter 6, we further explored the use of the latent conditional random field in

the case of modeling multimodal web images. Modeling such online photo collections

is a challenging problem because of their large scale and the existence of sparse, noisy

meta data (e.g . text tags, captions, GPS tags, etc.). We proposed a novel framework

called “multimodal latent CRF” as a generalization of the classical K-means algo-

rithm with multimodal features. We used one primary feature channel to define the

unary potentials in the CRF through calculating the distances of an instance to all

the centroids, and used similarity functions defined on learned Mahalanobis distances

to define the pairwise potentials in the photo collection.

Having studied these motivating problems that are representative of many others,

we have drawn some conclusions about best practices for applying CRFs to various

problems. In the rest of this chapter, we will first summarize the practices of using

conditional random field models (e.g . how to design the graph structure, how to

choose training and inference algorithms, etc.) for structured prediction problems in

computer vision. Then we show and compare a list of popular software tools related

to CRF training and inference.

7.1 Practices of Using CRF Models

CRF models have seen applications in many di↵erent research areas for modeling

structured data, and have been used extensively in computer vision problems (e.g .

image denoising, image restoration, 3D reconstruction, stereo matching, segmenta-
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tion, recognition, etc.). A CRF can be used whenever there are dependencies among

random variables, and e�cient ways to propagate information or constraints are fun-

damental.

CRF models have strong descriptive power that can easily convert the observations

and assumptions into principled mathematical formulations. On highly-connected

graph structures, the performance of message passing inference algorithms decrease

because of the di�culty to converge with a low gap between the energy under inferred

labels and the lower bound energy. However, there have been evidence that message

passing algorithms (e.g . TRW-S) could perform better than Graph-cuts approach [66]

if the message passing speed can be improved.

There are trade-o↵s in designing the model structure: using simple structures v.s.

using complicated structure. One naive solution to many structured problems would

be to use a fully connected graph to model the relations, but since algorithms for

exact and e�cient inference are not known on such graphs, approximate inference

must be used. To correctly build better graphical models for a given problem, we

need to apply domain knowledge and explore the relations between random variables

exclusively. In general, “minimalism” is a reasonable guideline for designing the CRF

structure, meaning that we need to remove unnecessary edges in the graph as much

as possible. For example, a human body structure obeys the kinematic constraints,

thus a tree structure is more appropriate than a fully connected graph. We need to

find good reasons for additional edges added into the graph, e.g . the decomposition

links that connect adjacent layers in our multi-layer composite pose model.

We also need to think about the design of potential functions when designing the

graph structure. Some special types of potential functions allow e�cient inference
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even if the graph has higher order clique potentials. For example, a cardinality

potential function which is associated with a sum of binary variables allows e�cient

and exact inference in the graph [119]. Also, Robust P n model [64] generalizes the

P n Potts model, and the inference problem can be solved using graph cuts methods

based on move-making algorithms.

Pairwise graph structures are the most common choice in practice, since most

relations can be modeled as pairwise relations, or can be decomposed into multiple

pairwise relations. On the other hand, graphical models with high order potential

functions are useful when “long-range” relations need to be captured, while local in-

formation such as pairwise relations between neighboring nodes are not enough. One

example for this is the image segmentation task, where neighboring pixels are encour-

aged to have the same label via pairwise smoothing terms in the graphical model.

However, this type of local constraints assumes pixels are independent, and is espe-

cially not su�cient in semantic segmentation tasks (i.e. automatically annotate each

pixel with an object category label). Thus, global constraints are used as high order

clique potentials in CRF models for capturing the interaction between superpixels (or

regions) to obtain better results.

To make the CRF training more convenient, we usually define the potential func-

tions to be linear scoring functions (i.e. dot product between a weight vector and

the feature vector). In this way, we can re-write the entire energy function of the

CRF model as a linear scoring function, and a linear structural SVM can be used for

learning the model parameters discriminatively. Once the parameters are learned, we

can perform inference by applying the learned CRF model on unseen instances using

the methods introduced in Section 2.4.
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CRF Software Comparisons. We make a brief comparison of popular software

tools related to training and inference of conditional random field models in Table 7.1

and Table 7.2. Some of these software tools or packages were used in one or more

experiments discussed in the previous chapters. For example, we have used CVX

and TRW-S in the attribute discovery project and the multimodal image modeling

project for CRF training and inference, respectively.

7.2 Future Work

In future work, we will study how to bring state-of-art ideas into the design of graph-

ical models like CRFs. For example, deep learning methods have recently been very

popular [118,123,145], and have been proved to be quite successful in many machine

learning applications.

A deep network has multiple layers with millions of parameters. It has strong

connections with feature learning, since the network input is usually directly taken

from raw signals (e.g . image pixels). The input signals are passed through several

convolution layers and hidden layers, and the parameters associated with these layers

are iteratively estimated using gradient descent algorithms. The output of the last

layer is learned, discriminative and high dimensional representation corresponding to

the input signal, and is used to feed into a logistic regression node to generate the

estimated label.

The success of deep learning methods in computer vision applications can be

attributed in part to the emergence of big data. Traditional datasets are mostly

constrained to hand-annotated images or video in research labs, and have shown

strong bias in terms of data selection. Approaches that generate good results on one
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CRF Training Tools

Authors Language Notes

LIBSVM

Chih-Jen Lin (Na-

tional Taiwan Uni-

versity)

C++, Java,

Python,

Matlab

very popular choice of SVM

tools, lots of documentations,

many functionality supports.

Another tool LIBLINEAR

from the same group has a

optimized implementation of

SVMs with linear or polyno-

mial kernels.

SVM-Struct

Thorsten Joachims

(Cornell Univer-

sity)

C++, Mat-

lab, Python

original implementation has

been tailored according to a

set of common tasks, includ-

ing SVM-multiclass, SVM-

hmm, SVM-align, and SVM-

rank, etc.

Latent SVM-

Struct

Chun-Nam Yu

(Cornell Univer-

sity)

C++, Mat-

lab

requires user implementation

of the loss function as well as

the inference algorithm.

CVX

Michael C. Grant

& Stephen P.

Boyd (Stanford

University)

Matlab

restricted to small scale op-

timization problems; easy to

use and implement; suitable

for linear or quadratic pro-

gramming with less than a

few hundred constraints.

Table 7.1: List of software tools for CRF training.
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CRF Inference Tools

Authors Language Notes

TRW-S
V. Kolmogorov

(IST Austria)
C++

support general graph struc-

tures with pairwise potential

functions; Matlab warper

available at http://www.

robots.ox.ac.uk/

~

ojw/

files/imrender_v2.4.zip.

QPBO
V. Kolmogorov

(IST Austria)
C++

support higher order clique

potential functions.

UGM
Mark Schmidt

(ENS)
Matlab

includes a lot of decoding

(or inference) methods, e.g.

ICM, GraphCut, LBP, Junc-

tion Tree, TRBP; also sup-

port sampling and parameter

estimation.

libDAI

Joris Mooij (Uni-

versity of Amster-

dam)

C++

winner of UAI approximate

inference challenge; limited

support to Matlab / Python

interface.

Table 7.2: List of software tools for CRF inference.

dataset might not beat simple baselines on others. With datasets (e.g . ImageNet)

of a much larger scale, however, we can assume the training data are representative

enough (close to real wold data distribution), and therefore data bias issue can be

ignored. Sophisticated methods developed on smaller datasets are di�cult to scale

well on such large datasets, either because of the di�culty to tune the parameters or
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because of instability of the model structure. Simple methods like linear SVM or linear

regression can generate relatively good performance, but they do not take advantage

of enough discriminative information that would be discovered in the large scale data.

Deep networks, on the other hand, contain hundreds of millions of parameters, and

thus can learn discriminative patterns even on datasets of very large scale.

One argument about deep networks is its possibility of overfitting. One small

datasets, there is evidence that deep learning methods do strongly overfit the data,

with classification accuracies close to 100% on the training set. Even for large scale

datasets, there are still possible overfitting issues: e.g . the DeepFace [118] system

trained a deep network with 120 millions of parameters on 4 millions of training

instances. This looks counterintuitive with the classical machine learning theory that

the training objective function should optimize the generalization error rather than

the training error. However, the assumptions behind the classical theory is that

the availability of training data is limited, thus the system should care whether or

not the learned function can perform well on unseen data. In the case of big data,

these assumptions do not hold anymore since the training exemplars become quite

representative, and even simple nearest neighbor classifiers can perform quite well at

such a scale.

It will be interesting to see how to design graphical models with “deep” hid-

den layers tailored for specific applications. The deep random field model [63] is

an interesting start, where a Markov random field with multiple hidden layer struc-

ture is proposed for solving the image segmentation problem. The model structure

shows a strong connection with deep networks such as Deep Boltzmann Machines

(DBM) [105]. We are interested in studying how to design conditional random field

133



models with deep hidden layers for object recognition applications.

We are also interested in exploring the three applications discussed in the thesis

into more depths. We are interested in fine-grained recognition, and especially in-

terested in building explicit 3D models for fine-grained recognition tasks (e.g . food

recognition, clothes recognition, etc.), since such 3D models together with the do-

main knowledge will generate more useful image representations. For example, in

food recognition, we can use photos of a plate of food from multiple views instead of

one, and then generate a simple 3D model so that more useful image features could be

extracted. We are also interested in large scale computer vision problems, e.g . model-

ing multimodal information (including visual, text, etc.) on the web, and devise novel

training and inference algorithms that work on datasets at such a large scale. We

believe that the methodology developed in this thesis foresees many possible solutions

to these various object recognition problems through the use of conditional random

field models.
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