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Abstract

In this paper, our goal is to speed up a standard slid-
ing window detector while maintaining detection accura-
cies. We do this by decomposing its weight template into
multiple component detectors with no redundancy. Each
component detector captures partial discriminative appear-
ance, and they can be used in a cascade detection pipeline
to aggressively reduce the size of search space. We formu-
late the decomposition problem as an orthogonal procrustes
problem. We further approximate the component detector in
the first cascade layer as separable 2D filters (i.e. a prod-
uct between two vector filters). The running time of such
component detector is thus reduced from quadratic to linear
with the dimension lengths of the detector template. We con-
duct extensive experiments using our approach on two well-
known object detection datasets: INRIA pedestrian detec-
tion dataset and PASCAL VOC 2007 detection dataset. We
used HOG features and CNN features in our experiments.
Our approach is almost “free lunch”: without manipulat-
ing the feature representations, it makes the detection pro-
cess several times faster.

1. Introduction
State-of-art object detectors are usually a classifier (e.g.

a linear SVM) trained on multi-channel features (e.g.
HOG histograms [6], SIFT bag-of-words [5] or CNN fea-
tures [23]) extracted from training images. At test time,
they are applied on the images through convolution oper-
ations or sliding window search [3, 4, 6, 7, 9, 11, 15]. For
example, [3] uses a single non-linear rigid template detector
with a feature pooling scheme, and applies sliding window
search to achieve very strong performance. Deformable part
models [15] require convolving images using root and part
filters. The root and part filter scores are then aggregated
together to output final detections. These methods show
promise in terms of their detection performance, but evalu-
ating the detector requires dense computations.

Our objective here is to accelerate a pre-trained linear
sliding window object detector without additional engineer-

Figure 1: Decompose a person detector into P = 10 orthogonal
detectors. Note that some component detectors are “part”-like, e.g.
the first detector is a “shoulders-and-legs” detector, and the third
detector is a “head” detector. Best viewed on screen.

ing work on the image features. Although linear models
are quite standard, they have produced competitive perfor-
mance in many computer vision tasks [27]. State-of-art
deep learning detectors like Deep Pyramid DPM [16] trains
linear SVM on top of deep image features. One classical
way to accelerate detection process is to use a cascade of
detectors [14, 30, 35, 39]. Traditional approaches [35] that
learn a detection cascade usually train hundreds or thou-
sands weak classifiers by adaptively reweighting training
exemplars. These weak detectors are trained on redundant
features, and the training procedure can take very long time.

We propose a novel detector decomposition framework
to solve this problem. We start with a pre-trained linear
object detector, and decompose it into a set of component
detectors by minimizing the reconstruction error between
each component detector and the original detector. In the
mean time, we require these component detectors to be or-
thogonal to each other, and therefore they are guaranteed
to capture no redundant feature information. We prove that
the sum of detection scores of the component detectors are
equal to the detection score of the original detector. This al-
lows us to build a fast detection cascade pipeline by learning
a series of admissible rejection thresholds. Figure 1 gives
an example orthogonal decomposition of a person detector
from our decomposition algorithm.



Figure 2: Overview of our proposed approach. (a) Decompose a pre-trained linear detector into orthogonal components. (b) Approximate
the first cascade layer using the largest rank-1 components from each feature channel. (c) Cascade detection on test images.

In the next step, we apply rank-1 approximation to the
first component detector in the detection cascade, and repre-
sent it as a product of a column filter and a row filter. There-
fore, this component detector can be evaluated in time lin-
early rather than quadratically with the detector size. These
component detectors capture partial (but orthogonal) dis-
criminative appearances. Our decomposition framework is
simple and general: using our approach, one can easily
speed up any linear detector by a significant amount. We
show an overview of our approach in Figure 2.

Orthogonal procrustes [31] has been widely used in
computational geometry and 3D point cloud analysis [10,
20], but it is less well known to other fields of computer
vision. We revisit this classical problem and apply it to ob-
ject detection. Our work also has connections with a lot of
works in object recognition, e.g. sparse coding [26, 36, 37],
low-rank approximation [21], cascade object detection [35],
etc. We will review representative works in Section 2.

Summary of contributions. In this paper, we propose
a novel generic framework to decompose a linear object
detector into orthogonal components while minimizing the
reconstruction error. We formulate the problem as a gen-
eralized orthogonal procrustes problem. We give theoreti-
cal guarantees on building detection cascade with the com-
ponent detectors generated by our algorithm, and we ap-
ply rank-1 approximations on the first detection cascade
layer to obtain significant speed-up. Finally, we conduct
systematic experiments on the INRIA and PASCAL VOC
2007 datasets using HOG and CNN features. Our approach
makes a linear detector several times faster, and is almost
“free lunch” to any linear object detection system.

2. Related Work
Our work is related with a number of works on object de-

tector acceleration and we review representative ones here.
One approach that solves this problem is based on reduc-
ing feature computation time. For example, integral chan-
nel features [8, 35] calculates simple statistics in each in-

dividual feature channel through the use of summed area
tables, and thus reduces the feature computation time sig-
nificantly. Other feature engineering approaches include di-
mension reduction (e.g. PCA or sparse coding) on compli-
cated features [15, 28]. However, these methods introduce
extra computational expense, and in practice the speed-up is
not significant. On the contrary, we intend to speed up ob-
ject detectors without any modification of the original im-
age feature. Moreover, our approach can be combined with
the above methods to obtain even faster detection speed.

Another line of work on speeding up object detectors is
based on reducing the search space of object candidates.
For example, branch-and-bound approaches by Lampert et
al. [24, 25] prune out image regions with low confidence
scores and does not exclusively evaluate all image windows.
However, these methods assume bag-of-words image repre-
sentations; our method is much more general, and can be
used with any feature types. Cascade detectors [14, 35] re-
duces the search space by applying a set of weak detec-
tors sequentially, while each detector only searches within
high scoring image regions returned by its predecessor. The
classical approach by Viola et al. [35] trains weak detectors
by iteratively reweighting training exemplars based on er-
rors of current detections. This approach usually requires
hundreds or thousands of detectors to be trained, and the
final cascade pipeline consists of more than dozens of cas-
cade layers. Our motivation is different with the above ap-
proaches. We seek for reconstructions of a pre-trained ob-
ject detector and enforce these reconstructions to have no
redundancy with each other. We also prove that these re-
constructions form a detection sequence, where the sum of
component detector scores is equal to the original detector
score. This gives us a convenient way to learn a series of
rejection thresholds for detector accelerations.

Our approach is also relevant with work on separable
filters [29] or separable detectors [2, 38]. Rigamonti et
al. [29] propose to learn a small bank of separable filters to
reconstruct a large bank of full-rank filters, but the applica-



tions are focused on low-level image processing rather than
object detection. Bauckhage et al. [2] propose to jointly
learn the separable filters and the classifiers, but the ap-
proach only works on simple and rigid objects. Pirsiavash
et al. [27] is an improvement where a biconvex learning
framework is used. However their work focus on transfer
learning rather than speeding up object detection. Yan et
al. [38] uses low-rank approximation of root filters to accel-
erate deformable part models. Their work does not handle
the filter redundancy problems, and does not aim to recon-
struct existing object detectors. On the other hand, we as-
sume only one linear detector is given, and try to decompose
it into multiple component detectors with no redundancy.

Other related works include object detection approxima-
tions using sparse representations. Song et al. [32, 33] pro-
pose to learn a set of basis templates which are then used to
reconstruct detectors for multiple object categories. Their
approach also minimizes the redundant information shared
by different object detectors at the same time. Their method
improves detection speed when multi-class object detectors
are applied; but this advantage disappears if there is only
one single-class object detector. The recent “Shufflets” rep-
resentation proposed by Kokkinos et al. [22] adopts a sim-
ilar idea. It removes redundancy by allowing small basis
templates to be shiftable when reconstructing root and part
filters of a deformable part model. Our approach is differ-
ent, in that we seek for orthogonal reconstructions of one in-
stead of multiple object detectors. Also, the detector speed-
up come from the fact that these orthogonal detectors can
be used in a detection cascade, and that we apply rank-1
approximation on the first cascade layer.

The work most closest to ours is Ambai et al. [1], where
the authors proposed to decompose an object detector into
a weighted sum of linear ternary classifiers trained on bi-
narized HOG features. The major speed-up of their ap-
proach comes from efficient computations of ternary tem-
plate matching with binary features. In our work, each com-
ponent detector is treated as an individual object detector,
and they are constrained to capture discriminative signals
from orthogonal directions. More importantly, we avoid
any feature engineering and do not have any assumption on
feature types. Thus our method is a generic framework to
speed up any linear object detector.

3. Model
Our key idea is to reconstruct an object detector using a

set of orthogonal detectors such that each one captures par-
tial discriminative appearances. At test time, they can be
used in a cascade pipeline for fast object detection. In addi-
tion to, we also observe that most computations happened in
the first cascade layer, thus we apply rank-1 approximation
on the first cascade layer. In practice, these give us signifi-
cant speed-up with almost no loss in detection accuracy.

3.1. The Decomposition Framework

Let ~w0 be a column vector reshaped from a pre-trained
detector template Ts×t×c, where s × t is the detector’s
height and width dimensions and c is the detector’s num-
ber of feature channels. Let p ∈ {1 . . . P}, and { ~wp} be
the reshaped column vector representations of the P com-
ponent detectors

{
T(p)

s×t×c

}
, which are decomposed from

the original detector Ts×t×c. We seek for { ~wp}, such that
they minimize the reconstruction error between each com-
ponent detector T(p)

s×t×c and the original detector Ts×t×c.

min
{ ~wp}

P∑
p=1

‖ ~w0 − ~wp‖2F , s.t. ~wp
T ~wq = 0, ∀ p 6= q (1)

where ‖ · ‖2F denotes the Frobenius norm. The constraint in
the above objective function guarantees the component de-
tectors are orthogonal (i.e. share no redundant information).

In the above formulation, we aim to minimize the re-
construction error between each individual component de-
tector and the original detector. We do this because our
framework treats component detectors independently in a
cascade, therefore the performance of each component de-
tector is important. Thus, we let each component detector
to be similar with the original detector (pretrained, having
guaranteed performance).

We now move P into the squared terms. We first repli-
cate ~w0 P times to obtain W0 = ( ~w0, ~w0 . . . , ~w0︸ ︷︷ ︸

P copies

) ∈

Rd×P , where d = s × t × c is the length of ~w0. We
then concatenate all unknown variables { ~wp} into W =
( ~w1, ~w2 . . . , ~wP) ∈ Rd×P , and therefore the constraint in
the objective function (1) is equivalent to enforcing W to be
an orthogonal matrix (i.e. column vectors in W are orthog-
onal to each other). Therefore we can obtain the following
learning objective.

min
W
‖W0 −W‖2F , s.t. WTW = D2 (2)

D ∈ RP×P in the above formulation is an unknown
diagonal matrix. This is a form of quadratic constrained
quadratic programming, and is difficult to solve in general.
Let W = VD such that D is an unknown diagonal matrix
and V is an unknown orthonormal matrix (i.e. VTV = I).
Thus the objective function ρ = ‖W0−W‖2F is equivalent
with ρ = ‖W0 −VD‖2F .

Minimizing ρ(D,V) subject to VTV = I is then re-
duced to a form of the generalized orthogonal procrustes
problem, and there exists an iterative optimization approach
which alternately solves for V and D [13]. Here we give a
brief sketch of the algorithm. First, we initialize the diag-
onal matrix D to be an identity matrix I. Once D is fixed,



minimizing ‖W0−VD‖2F has a closed-form solution [31].
This is done by observing that ρ(D,V) = ‖W0 −
VD‖2F = Tr WT

0 W0+Tr DTVTVD−2 Tr WT
0 VD =

Tr WT
0 W0+Tr DTD−2 Tr DWT

0 V. Thus minimizing
ρ is equivalent to maximizing Tr DWT

0 V. Let usvT =
DWT

0 is a SVD decomposition, we have Tr DWT
0 V =

Tr usvTV = Tr svTVu =
∑

i s(i, i)Z(i, i), where
Z = vTVu is orthonormal. Therefore, Tr DWT

0 V =∑
i s(i, i)Z(i, i) ≤

∑
i s(i, i). The maximum value is

achieved if and only if Z = Id×P, i.e. V = vId×PuT.
Once we have V, we can solve for D using standard least
square methods by setting derivatives of each diagonal entry
D(k, k) to 0, i.e. D(k, k) =

∑
n W0(n, k)V(n, k).

3.2. Learning Detection Cascade

We introduce the following lemma before presenting our
cascade learning algorithm.

Lemma 1. The original pre-trained linear object detector
~w0 =

∑P
p=1 ~wp

∗, where ( ~w1
∗, ~w2

∗ . . . , ~wP
∗) is the so-

lution to (2).

Proof. The optimization objective (2) minimizes ρ =
‖W0 −W‖2F , which can be re-written as:

ρ =
P∑

p=1

( ~w0
T ~w0 + ~wp

T ~wp − 2 ~w0
T ~wp)

= P‖ ~w0‖2F +
P∑

p=1

‖ ~wp‖2F − 2 ~w0
T(

P∑
p=1

~wp)

Since ~wp and ~wq are orthogonal for any p 6= q, we have∑P
p=1 ‖ ~wp‖2F = ‖

∑P
p=1 ~wp‖2F . Thus ρ becomes:

ρ = P‖ ~w0‖2F + ‖
P∑

p=1

~wp‖2F − 2 ~w0
T(

P∑
p=1

~wp)

= (P − 1)‖ ~w0‖2F + ‖ ~w0 −
P∑

p=1

~wp‖2F

The minimum of the above function is achieved when
~w0 =

∑P
p=1 ~wp. On the other hand, we calculate

the value of the objective function (2) using the min-
imizers ( ~w1

∗, ~w2
∗ . . . , ~wP

∗). The alternate optimiza-
tion algorithm in [13] first calculates V = vId×PuT

using a fixed D. Observing that rank(W0) = 1,
we have rank(DWT

0 ) = 1 since D is diagonal,
and thus Tr DWT

0 V ≤ s(1, 1) = ‖DWT
0 ‖F =√∑

k D(k, k)2‖ ~w0‖2F = ‖D‖F ‖ ~w0‖F . So we have
ρ(D,V) = Tr WT

0 W0 + Tr DTD − 2 Tr WT
0 VD ≥

P‖ ~w0‖2F + ‖D‖2F − 2‖D‖F ‖ ~w0‖F = (P − 1)‖ ~w0‖2F +
(‖D‖F −‖ ~w0‖F )2 ≥ (P −1)‖ ~w0‖2F . The minimum value
is obtained with the minimizer ( ~w1

∗, ~w2
∗ . . . , ~wP

∗) to (2),
thus they must satisfy ~w0 =

∑P
p=1 ~wp

∗.

Let φ(In) extract a feature vector (e.g. HOG histograms)
from exemplar In, and f(In, ~w0) = ~w0

T φ(In) be the
corresponding linear scoring function. The above lemma
shows that the detection score of the original linear detec-
tor f(In, ~w0) =

∑
p f(In, ~wp) on any exemplar In. This

property offers a very convenient way to learn cascade de-
tector using the component detectors. Following Ambai et
al. [1], we compute a series of rejection thresholds for each
cascade layer p:

Rp = τ −
P∑

j=p+1

αj

where τ is the threshold of the original detector, αp =
maxn f(In, ~wp) is an estimate of upper bound detection
score using the individual component detector ~wp. We cal-
culate αp on the positive training images. Figure 3 visual-
izes an actual detection cascade by plotting the evaluation
areas of each cascade layer.
Discussions. Our formulation of the decomposition algo-
rithm is data independent. We assume ~w0 is a pre-trained
detector, therefore reconstructing ~w0 from orthogonal di-
rections implicitly learns discriminative information from
training data. One can adopt a data dependent formula-
tion by modifying the objective function ρ such that ρ =
‖WT

0 X−WTX‖2F , where X ∈ Rd×N encodes the train-
ing data. Simple algebra shows ρ = ‖WT

0 X−WTX‖2F =
Tr (WT

0 −WT)XXT(W0 −W). The covariance matrix
Σ = XXT makes minimizing the data dependent objective
function much more difficult. Combining with the orthog-
onal constraint WTW = D2, the optimization is a form
of weighted orthogonal procrustes problem [34]. However,
the numerical approach in [34] is not able to handle large
matrices in our case. Moreover, Lemma 1 does not hold for
the data dependent formulation. Thus, it is not clear how to
learn the rejection thresholds of such a cascade detector in
a principled way.

3.3. Rank-1 Approximation

The orthogonal decomposition algorithm shows that the
original detector can be decomposed into multiple compo-
nent detectors with no redundancy. In addition, Lemma 1
shows that we can build a cascade detector using these com-
ponent detectors by running a simple algorithm to estimate
the rejection thresholds. These theoretical results show that
we can always represent a linear object detector as an equiv-
alent cascade detector where the reconstruction error is min-
imized. At the same time, any two component detectors in
the cascade share no redundant information. Note that these
results do not help improving detection speed; on the con-
trary, more evaluations are required for the cascade detector
than the original detector.

However, in a detection cascade, each cascade layer
makes rejections on image regions that pass the test of its



Figure 3: Cascade detection result on an INRIA test image with P = 5 cascade layers. For each cascade layer, we plot the image locations
where the corresponding component detector is evaluated. This particular cascade detector achieves an average of 2× speed-up on INRIA
test set with no loss in detection AP (average precision). Final detections show bounding boxes after non-maximum suppression (NMS).

preceding cascade layers. Therefore, detectors at earlier
cascade stages do not have to be strong classifiers. Based
on these intuitions, we perform SVD decomposition of the
detector at the first cascade layer to obtain its rank-1 com-
ponent corresponding to the largest singular value. We do
this for each feature channel separately, and concatenate all
these rank-1 approximations together to form our rank-1
approximation of the detector. This approximate represen-
tation makes the resulting detector less discriminative, but it
reduces the time of the convolution operations significantly.
On the other hand, rank-1 approximations of the other cas-
cade layers do not give any speed-up benefit, in that the rest
of the detectors are only evaluated at specific image loca-
tions, rather than convolving the entire image. Experiments
show that our design of such a detection cascade is able to
achieve a lot of detection speed-up compared with the orig-
inal detector.

To summarize, our proposed framework consists of sev-
eral key steps. Given an pre-trained linear object detector,
we first apply the iterative decomposition method in Sec-
tion 3.1 to obtain a set of component detectors. Then we
organize these component detectors in a cascade pipeline
and learn the cascade thresholds using the approach in Sec-
tion 3.2. Finally, we apply rank-1 approximation on the
first cascade layer as described in Section 3.3. The result is
a fast cascade detection pipeline that preserves the original
detection accuracy.

4. Experiments

We now evaluate the cascade detectors generated by our
orthogonal decomposition algorithm. We use two well-
known object detection datasets: INRIA Person dataset (IN-
RIA) [6] and PASCAL VOC 2007 dataset (PASCAL) [12].
On both datasets, we conduct ablation studies by varying P
(number of component detectors) which gives different cas-
cade structures. We also study the relation between detector
speed-up versus the loss in detection performance.

Implementation details. We first use HOG as our image
features. We train LDA detectors [19] on both INRIA and

Figure 5: Cascade detection performance on INRIA test set with
HOG features. Detection accuracy (AP) decreases as the speed-
up factor increases. We vary the global detection threshold for
each cascade structure, and plot the AP scores with corresponding
speed-up factors. By allowing 2× speed-up, the P = 3 cascade
detector has 0.3% loss in AP and the P = 5 cascade detector has
no loss in AP.

PASCAL datasets due to their efficiency in training time.
We use “root-only” versions for all such detectors. On IN-
RIA dataset, we train a single-template detector; on PAS-
CAL dataset, we follow [17] to train default “root-only”
LLDA-0 detectors (three aspect ratio clusters with each
grouped into left/right splits) on all 20 PASCAL object cat-
egories. We modify the single thread convolution code in
C provided by [18] into one version that handles two-pass
filtering using two vector filters, and another version that
evaluates dot product at specified locations on image fea-
ture maps. We omit the cost on computing features when
measuring the detector speed since our goal is not to ac-
celerate feature computation. The only parameter of our
orthogonal decomposition algorithm is the number of com-
ponent detectors P . The code is implemented in Matlab,
and it takes just a few seconds to decompose a pre-trained



Figure 4: Component detector performance on INRIA test set with HOG features by varying P = 2, 3, 5, 10. These component detectors
are decomposed from a HOG LDA person detector with AP = 77.9%.

detector. In order to show its generality, we also use our
approach to speed up a DPM detector with CNN features
(i.e. DPDPM [16]) on the PASCAL dataset. All of our ex-
periments were conducted on a 8-core 3.0GHz PC. We use
a Tesla K40 GPU to finetue an ImageNet CNN network on
PASCAL 2007 dataset and extract the conv5 layer output as
CNN features. We use average precision (AP) to measure
detection accuracies.
Detector orders in a cascade. We take a simple strategy
to order the component detectors in the final cascade. The
first detector in the cascade is selected to have the strongest
rank-1 approximation. We do this by taking each compo-
nent detector and measure the ratio between the largest sin-
gular value and the sum of all its singular values. Compo-
nent detectors with highest ratio is placed in the first cas-
cade layer. The rest detectors are simply placed in ascend-
ing order in terms of their detection accuracies on a small
validation set.

4.1. Results and Discussions

Component detector performance. We test individual com-
ponent detectors and report their AP (Figure 4) on the IN-
RIA test set. As P increases, the average performance of in-
dividual component detectors become weaker. This makes
intuitive sense: our decomposition algorithm tries to “split”
the original detector into several components while enforc-
ing their discriminative power to match with the original
detector as much as possible. Note that we do not restrict
the orthogonality constraints to appear in the spatial domain
or the feature channel domain. However, the resulting com-
ponent detectors still show “part-like” properties (Figure 1).
Cascade performance on INRIA. We run experiments with
different cascade structures (i.e. different P ), and analyze
the trade-off between detector speed-up and AP loss. We
show results in Figure 5. Note that our re-trained version of
the HOG LDA detector has an average precision of 77.9% 1

on the INRIA test set. The corresponding average running
time of such a detector on each test image is about 0.14
seconds. Our detector size is 18×6. Therefore, the theoret-

1Our re-trained detector’s AP is higher than the 75.1% reported in [19].

ical maximum speed-up factor is about 4.5 (rejecting “all”
false positives in the first cascade layer). we observe that
different choices of P have an impact on the cascade speed-
up factors. The cascade detector performance is more sta-
ble when P is small. For example, P = 2 allows 4.1×
speed-up with a 1.8% AP loss, and P = 3 allows 3.8×
speed-up with a 1.2% AP loss. The corresponding AP drops
quickly when the speed-up factor approaches the theoret-
ical limit (e.g. P = 2 has 70.0% AP with 4.4× speed-
up and P = 3 has 70.5% with 4.2× speedup). P = 10
gives worst speed-up effect mainly because more compli-
cated structures make the rejection threshold learning step
difficult. When P gets larger, the AP drop happened earlier
than small P ’s as the speed-up factor increases. Among all
our choices of P , the AP performance of P = 5 is slightly
better than others within 2.5× speed-up. This reflects a
trade-off between the complexity of cascade structures and
detector performance. By comparing P = 2, 3, 5, 10 on
INRIA dataset, we observe that a smaller P tends to give
more stable and relatively high AP scores, but the peak per-
formance is somewhat worse than a larger P . Component
detectors of a larger P gives worse average performance
(Figure 4), but the AP loss after rank-1 approximation is
smaller. We conduct a simple experiment to verify our hy-
pothesis. For P = 2, 3, 5, 10, we use the first cascade layer
in our cascade detector as a separate person detector, and
calculate its AP score on INRIA test set. Compared with
the original full-rank component detectors, the correspond-
ing AP loss is 23.7%, 23.5%, 16.9%, 15.1% respectively.
For large P ’s, although each component captures less dis-
criminative information, their rank-1 approximations lose
less information than their small P counterparts.

Cascade performance on PASCAL. We report mean APs
and their corresponding average speed-up factors on the
PASCAL VOC 2007 test set (Table 1) for both HOG de-
tector and CNN detector. We retrain the LLDA-0 [17]
detector and DPDPM [16] as the baselines. These LDA
and DPDPM detectors are then used in our decomposition
framework to learn component detectors corresponding to
various P . Performance of different cascade structures on
sample PASCAL categories are summarized in Figure 6.



(a) LLDA-0 [17]
Original P = 2 P = 3 P = 5 P = 10

mAP (%) 18.0 16.0 15.4 14.5 16.6 15.9 15.2 17.0 16.3 13.9 16.8 14.7 12.5
Speed-up 1.0 2.6 3.0 3.7 1.9 2.7 3.4 2.1 2.6 3.5 1.8 2.7 3.3

(b) DPDPM [16]
Original P = 2 P = 3 P = 5 P = 10

mAP (%) 44.4 42.2 42.0 40.2 42.9 42.8 39.7 42.8 42.3 39.1 42.9 40.8 34.6
Speed-up 1.0 2.8 3.0 3.4 2.0 2.8 3.5 2.1 2.5 3.3 1.8 2.7 3.2

Table 1: Mean average precisions on the PASCAL VOC 2007 test set with different speed-up factors and different P ’s. Top: LDA
detectors trained on HOG features. Bottom: DPM detectors trained on CNN features.

Average Precision (%)
Speed-up 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.4
U+L 76.4 75.1 69.8 69.8 62.6 62.6 54.2 45.4
RankOne+ORG 76.6 76.0 76.0 76.0 76.0 76.0 70.4 62.8
Proposed 76.7 76.7 76.7 76.7 76.7 76.1 76.1 70.0

Table 2: Comparison between our P = 2 orthogonal cascade detector (Proposed), the RankOne+ORG cascade detector (original
detector in the second layer and its largest rank-1 component in the first layer) and the U+L cascade detector (upper half’s rank-1
approximation in the first layer and the lower half in the second layer) on the INRIA test set.

The change in AP scores of different detectors could be
different when the threshold change is same; but the mean
AP scores and the average speed-up factors show a similar
trend compared with the cascade performance on INRIA
test set. On most categories, P = 2 gives lowest peak per-
formance under all speed-up factors, while it gives higher
AP score than other P ’s when the speed-up factor is close
to 4. It is interesting to see that, for some classes, our HOG
and CNN cascade structures give even better performance
than the original detectors. On “motorbike”, our 2-layer
HOG cascade detector gives a 28.1% AP with 3.3× speed-
up; and the 3-layer HOG cascade detector gives AP scores
27.5% with 1.9 speed-up. Similarly on “aeroplane”, our 2-
layer and 3-layer CNN cascade detectors give 44.6% AP
with 2.5× speedup and 44.3% AP with 2.0× speedup, re-
spectively. We believe these are due to the effect of rank-1
approximation of the first cascade layer: although rank-1
approximation makes individual component detectors be-
come worse, the cascade learning stage and the fact that we
use the first layer as “weak classifiers” may introduce extra
benefit to our proposed cascade detection system (e.g. less
overfit to training data). A holistic approach that incorpo-
rates our decomposition algorithm, rank-1 approximation,
and the cascade learning may give a better answer to this
question. We leave this as interesting future work.

Connection with SVD. Our decomposition framework
seeks for orthogonal decompositions while minimizing the
reconstruction error. On the other hand, it is worth pointing
out that one can directly apply SVD on the original detec-
tor template to obtain a series of rank-1 orthogonal compo-
nents. However, such decomposition does not minimize the
reconstruction error in (1), thus there is no guarantee on the
performance of the component detectors. We run two ex-

periments to verify this hypothesis. First, we perform SVD
analysis on the 18× 6 pre-trained HOG detector trained on
INRIA dataset (AP score= 77.9%), and obtain its 6 rank-1
component detectors (corresponding to the 6 singular val-
ues). The detection APs are 59.6%, 9.3%, 27.3%, 9.1%,
5.4%, and 0.8% respectively. Such SVD decomposition
gives quite poor performance compared with the original
detector and our orthogonal components (Figure 4). Next,
we design two 2-layer baseline cascade detectors. One is
built with the original detector in the second layer and its
rank-1 appproximation in the first layer. The other one is
an orthogonal cascade detector, and is built with the upper
and lower halves of the original detector (zeroing out the
rest). The upper half is approximated by its largest rank-1
component and is used as the first cascade layer. We com-
pare these two baseline detectors with our P = 2 cascade
detector and report the results in Table 2. Our proposed cas-
cade detector clearly outperforms the baseline detectors at
all speed-up factors. The difference becomes quite signif-
icant when the speed-up factor is larger. This shows that
direct rank-1 approximation on the original detector or its
naive decomposition gives a much weaker detector.

5. Conclusions and Future Work
In this paper, we present a generic orthogonal decompo-

sition algorithm for decomposing any linear sliding window
detector. Theoretical results guarantee a convenient algo-
rithm to learn a cascade detector with the component detec-
tors. In addition, by using rank-1 approximations in the first
cascade layer, our cascade detector achieves a lot of detec-
tion speed-up while maintaining minimal loss in detection
AP. Our approach is not contrained by the choice of image
features. We conduct extensive experimental studies using



(a) Original Detector: HOG LDA

(b) Original Detector: DPDPM

Figure 6: Sample cascade detection performance on PASCAL VOC 2007 test set. For all categories, we vary the global threshold of the
learned cascade detectors. We report AP changes versus speed-up factors for P = 2, 3, 5, 10, as well as the AP for the original detector
(ORG). Note that the max speed-up factors for “bottle” and “car” classes are both less than 4.0.

HOG and CNN features on two well-known object detec-
tion datasets (INRIA and PASCAL) to compare our cas-
cade detector against baseline methods. Without modifying
the image features, our proposed method achieves signifi-
cant speed-up compared with the original model. In future

work, we study the possibility of jointly learning orthogonal
components as well as the cascade structures with rank-1
approximations. We will also study the detection perfor-
mance when combining our approach with other speed-up
techniques (e.g. binary features, integral channel features).
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sis, Umeå University, 2006. 4

[35] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In CVPR. IEEE, 2001. 1, 2

[36] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.
Locality-constrained linear coding for image classification.
In CVPR, pages 3360–3367. IEEE, 2010. 2

[37] W. Wang, L. He, P. Markham, H. Qi, Y. Liu, Q. C. Cao,
and L. M. Tolbert. Multiple event detection and recogni-
tion through sparse unmixing for high-resolution situational
awareness in power grid. IEEE Transactions on Smart Grid,
5(4):1654–1664, 2014. 2

[38] J. Yan, Z. Lei, L. Wen, and S. Z. Li. The fastest deformable
part model for object detection. In CVPR. IEEE, 2014. 2, 3

[39] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan. Fast human
detection using a cascade of histograms of oriented gradi-
ents. In CVPR. IEEE, 2006. 1


