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Abstract

Egocentric vision has received increasing attention in re-
cent years due to the vast development of wearable devices
and their applications. Although there are numerous exist-
ing work on egocentric vision, none of them solve Optical
Music Recognition (OMR) problem. In this paper, we pro-
pose a novel optical music recognition approach for ego-
centric device (e.g. Google Glass) with the assistance of
MIDI data. We formulate the problem as a structured se-
quence alignment problem as opposed to the blind recog-
nition in traditional OMR systems. We propose a linear-
chain Conditional Random Field (CRF) to model the note
event sequence, which translates the relative temporal rela-
tions contained by MIDI to spatial constraints over the ego-
centric observation. We performed evaluations to compare
the proposed approach with several different baselines and
proved that our approach achieved the highest recognition
accuracy. We view our work as the first step towards ego-
centric optical music recognition, and believe it will bring
insights for next-generation music pedagogy and music en-
tertainment.

1. Introduction
Egocentric vision becomes an emerging topic as first-

person camera (e.g. GoPro, Google Glass) has gained more
and more popularity. These wearable camera sensors have
attracted a lot of computer vision researchers due to its wide
range of applications [3]. Building these applications is,
however, challenging due to various reasons such as the spe-
cial observation perspective, blurs caused by camera motion
and real-time computation request.

In the recent few years, egocentric applications have ex-
tended to many areas such as object recognition [8, 14, 19],
video summarization [21] and activity analysis [7, 16, 22].
Similar with [8], we assume weak supervision is available
to the recognition system. More specifically, we assume
note sequences from the corresponding MIDI file is given,
which provides useful information to direct the recognition
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Figure 1: (a) Piano player with egocentric score reader; (b)
Wearable camera; (c) First-person view score image cap-
tured by the device

process.
To the best of our knowledge, there is no existing work

on music recognition using egocentric cameras. One possi-
ble reason is the limitation of existing Optical Music Recog-
nition (OMR) systems [15]. An fully automatic system with
consistently high accuracy is not realistic in practice [18].
Therefore, it is difficult to directly apply any previous OMR
softwares to this challenging egocentric problem. More-
over, the inconstant view point angles make egocentric im-
ages much more distorted compared with printed music
pieces (the default input for most OMR softwares), plac-
ing even more difficulty to the problem. In order to bypass
these difficulties, we propose a novel framework that uses
the MIDI data as a guidance of recognition. MIDI is an eas-
ily accessible music symbolic format, and also rather easy
to parse. There have already been numerous audio-to-score
alignment applications [6, 13, 17], which mainly focused
on matching MIDI with audio. Different from these appli-
cations, our system applies a graphical model to incorporate
MIDI into OMR system and focuses on egocentric recogni-
tion.

Fig. 1 shows a sample use case of our system, where the



human subject sits almost still in front of a piano. This al-
lows to simplify the problem from processing entire video
to individual frames. In addition, music scores are highly
structured according to their symbol-level semantics. The
temporal information contained by MIDI data implies the
exact spatial order of notes appearing on the image. More-
over, we can explore interesting relationships between the
Inter-Onset Intervals (IOI) of adjacent notes and their spa-
tial distances in notation. Given the above observations, we
feed the MIDI data into the recognition process and con-
strain the search space, such that the outputs are musically
meaningful. Once the structure is determined, the corre-
sponding score can be represented by a connected graph
and the problem can be formulated as graphical model in-
ference.

Yi et al. [23] proposed an interesting egocentric Opti-
cal Character Recognition (OCR) framework to assist blind
persons. They applied an Adaboost model for text region
localization and then used off-the-shelf OCR engines to
perform the recognition. Analogously, we also propose a
pipeline for egocentric OMR system. More specifically, we
decompose our system into three steps. In the first step, we
localize the score region based on foreground-background
segmentation. In the second step, we propose to automati-
cally discover the staff lines using Random Sample Consen-
sus (RANSAC). In the third step, we use a linear chain Con-
ditional Random Field (CRF) to model the note sequence
and search for the optimal sequence that best aligns with
the observation by incorporating MIDI information.

Summary of contributions. Our contribution in this pa-
per is three fold. Firstly, we are the first to propose the
problem of egocentric optical music recognition, which has
important applications for education and entertainment pur-
poses. Secondly, we propose a novel MIDI-assisted egocen-
tric OMR system that recognizes music symbols, and aligns
them with the structured MIDI data using a CRF model.
Lastly, we collect the first egocentric OMR dataset using a
Google Glass, and perform systematic benchmark experi-
ments. We show that our approach is accurate compared to
several baseline methods.

2. Related Work
Image segmentation. Segmentation plays an important

role in many computer vision systems by serving as prepro-
cessing step. Ren et al. [19] proposed a bottom-up approach
for figure-background separation, jointly using motion, lo-
cation and appearance cues. Fathi et al. [7] segmented the
foreground and background at super-pixel level, and model
the temporal and spatial connections with a MRF. Serra et
al. [20] combined hand segmentation and activity recogni-
tion to achieve higher accuracy. The objective of our pa-
per, however, is different with segmenting such foregrounds
(e.g. human hands or natural objects). Our goal is to sepa-

rate the document out of a natural scene. Some primitive
methods has been proposed in [11], but it’s not directly ap-
plicable to the much more complex egocentric environment.
In our experiment, we make use of the shape prior of the
music scores and a probabilistic color model to identify the
foreground region.

Staff line detection. Staff detection or removal is al-
ways one of the key steps in OMR. The performance of
the pitch recognition is highly dependent on the staff detec-
tion accuracy. Therefore, in order to assign the location of
notes to their correct pitch index, we need to find staff lines
at first. Cardoso et al. [5] modeled staff finding problem
as a global search of stable path, which is not a computa-
tionally cheap design. Fujinaga et al. [10] uses projection-
based approach to remove staff lines and keep the most of
music symbols. Our task is more challenging in that the
staves don’t share the same angles due to the multidimen-
sional page distortions. Further, the observation is much
more blurry than printed version, and we have higher effi-
ciency request than offline systems. To overcome all these
new difficulties, we choose to apply a bottom-up approach
to propose and select plausible staff-line models. The pop-
ular RANSAC [9] framework proved success in various
real-time systems [1, 2]. Our method is inspired by these
sampling-based methods.

Optical music recognition (OMR). There have been a
lot of progress of OMR studies but the current state-of-the-
art still leave many open questions [2, 4]. These offline sys-
tems heavily rely on human labors for error corrections, and
thus it’s impractical to apply them directly in egocentric sce-
narios. The traditional OMR takes on the responsibility to
identify symbols from scratch, without any assistive infor-
mation. This proved to be a challenging problem since even
if all the musical symbols have been correctly identified, the
higher-level interpretation is still non-trivial [12]. Our ap-
proach, on the contrary, embeds useful music information
of MIDI to the deepest heart of the system, and use it to
direct the whole recognition process.

In the following sections, we will explain the technical
details. We first describe our approach for localizing the
sheet music in the captured image in Section 3.1, and then
discuss our staff line detection algorithm in Section 3.2. We
then introduce our inference algorithm for aligning music
symbols and MIDI data in Section 3.3. Experimental stud-
ies are explained in Section 4.

3. Approach

3.1. Sheet Music Localization

Modeling the Sheet Music Region. The score region has
a strong shape prior due to the viewpoint of the observer
and the rectangular boundaries of the original score docu-
ments. We treat the sheet music localization as a parameter-
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Figure 2: Proposing candidate score region: (a) color image down-sampled to 1/10 its original size; (b) converted to
grayscale; (c) thresholding and binarization; (d) morphological smoothing and hole-filling.

ized boundary identification problem, which can be formu-
lated as the optimization of these boundary parameters.

Θ∗ = arg max
Θ

∑
(i,j)∈RΘ

D(p(i, j)) (1)

D(p(i, j)) is the data term for pixel p(i, j). The re-
gion parameter for region RΘ, Θ = {Θl,Θr,Θt,Θb,ΘI},
contains five components respectively representing the left,
right, top, bottom boundaries and the support of image. ΘI

is one scalar parameter; each of the rest contains two vari-
ables: the angle and intercept: Θl,r,t,b = (θl,r,t,b, intl,r,t,b).
The inference was performed in the parameter space SΘ,
constrained by the shape prior (reflected in angles) and the
minimum width/height of the foreground region. The image
was down sampled in this step for sake of computational ef-
ficiency.
Data Likelihood. We learn the data model in Eqn. 1 in an
unsupervised way, which adapts to different illumination
conditions. We first convert the down-sampled RGB im-
age to grayscale and apply a threshold to obtain pixels with
high intensities. We smooth these seed regions and learn
the probabilistic representation for the foreground with r,g,b
components of the colored version inside this smoothed
candidate region using Gaussian Mixture Models (GMM):
G =

∑
1≤i≤N αiNorm(mi, σi). We learn the background

GMM model analogously outside the smoothed candidate
region. The smoothing process is illustrated in Figure 2.

Note that N is the number of the components in the
model, m and σ are the mean and standard deviation for
each component. We set N = 3 for both Gfg and Gbg ,
and learnt the parameters via several iterations of standard
Expectation-Maximizaiton(EM) process. We use the log ra-
tio of these two distributions to represent the data likelihood
(Eqn. 2):

D(p(i, j)) = log
Gfg(p(i, j))

Gbg(p(i, j))
(2)

Figure 3 shows us the foreground heat map generated
from the proposed data model. The higher the value is, the

Figure 3: Foreground heat map for score region localiza-
tion.

more possible it belongs to the score region. The inference
will then be performed over this heat map.

3.2. Staff Detection

Staff lines in egocentric scores are oftentimes skewed.
More importantly, they appear with very different angles.
A top-down model for staff detection on the whole page
requests excessive computation, so we resort to a more ef-
ficient bottom-up RANSAC approach. The algorithm pro-
poses plausible local models and evaluate them by global
votes.

We model the staff as groups of five parallel lines. The
model is composed of a parameter tuple (α, β,∆), where α
and β represents the slope and intercept of the first staff line,
and ∆ is the gap between two adjacent lines. We propose a
constant number of local models based on a group of three
sampled pixels from the binarized score region. We call one
such sampled group as a pixel triplet; each triplet proposes
3× 4 = 12 local models (see Figure 4).

We prune the least voted hypothesized models and only
keep those satisfying two different criteria through non-
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Figure 4: Staff model proposal: (a) three possible directions
of adjacent two staves based on the sampled triplet; (b) four
possible locations of adjacent two staves on the complete
staff.

Figure 5: Non-Maxima-Suppression for staff identification
with two different constraints. Left: non-overlapping con-
straint; Right: neighborhood slope similarity constraint.
Solid Red: local optimal model; Dashed Black: eliminated
models which violates these two constraints.

maximum suppression (Figure 5): neighborhood slope sim-
ilarity (the neighbor staves should have close slopes) and
non-overlapping (staves should not conflict with each other)
constraints. The thinned staff models were accepted as the
final interpretation of the whole-page staff structure.

3.3. Music Recognition

We model egocentric optical music recognition as a note
sequence alignment problem between the egocentric obser-
vation and MIDI data. We focus on the note head symbol as
the important anchor for this alignment task considering the
unique correlation between note events in MIDI and their
corresponding note heads on the image. There are occasion-
ally exceptions breaking this bijective MIDI-to-Notehead
mapping, such as in trills, grace notes, and tied notes, or
due to different notational conventions, but it doesn’t un-
dermine the ground of selecting note head as the alignment
anchor rather than any other symbols like stem, beam, rest,
flag, etc. since the others carry much more variance across
different notations.

We extract three important music attributes for each mu-

Event Pitch ID (Name) Onset End of Measure
1 48 (C3) 2.25 0
2 50 (D3) 2.50 0
3 52 (E3) 2.75 0
4 53 (F3) 3.00 0
5 50 (D3) 3.25 0
6 52 (E3) 3.50 0
7 48 (C3) 3.75 1

Table 1: Sequence of note events parsed from MIDI (Bach
Invention in C major (No. 1), the 1st measure).

sic event from MIDI data: onset, pitch, and end of measure.
Table 1 shows the details of the extracted note events.

Given image data X and the locations of a certain staff
line l, we want to estimate the optimal measures aligned to
the current staff. Let S represent the state space over which
we search for the optimal alignment. State s is composed of
(n, x, y, a), the note event n extracted from MIDI, the loca-
tion (x, y) of its note head on the page and its latent music
attribute a. n contains the pitch and onset of the note, and
a is a variable taking the implicit music information that
is not directly contained by symbolic data. In our experi-
ment setting, we specifically infer the clef associated with
the current note to unveil the missing semantics.

The inference problem thus can be formulated as:

S∗ = arg max
{si}

E(si|X, l) + E(si, si+1|X, l) (3)

= arg max
{si}

E(ni, xi, yi,ai|X, l) + E(si, si+1|X, l)

(4)

Once we have the note’s information, staff locations and
its associated clef, the note’s vertical position becomes a
deterministic function of its horizontal coordinate:

y = f(x|n, a, l) (5)

The pairwise term in Eqn. 4 serves as a hard spatial con-
straint. It penalizes the impossibly small distance between
adjacent notes if they have large Inter Onset Interval (IOI).
We use a small quantization value as the IOI threshold (ε),
and a predefined number of space units (staff gap σ) as
the minimum note distance. This constraint sets reasonable
minimum distance for ordinary note pairs while allowing
for occasional violations caused by small notes like trills or
grace notes.

E(si, si+1|X, l)
= E(‖xi − xi+1‖|X, l, ni, ni+1)

= E(∆i,i+1|X, l, ni, ni+1)

=

{
− inf, ∆i,i+1 < C · σ, IOIi,i+1 > ε

0, otherwise



Figure 6: Graphical model for MIDI-assisted Optical Music Recognition. mi, nj denotes the j-th note event of measure i.
We omitted the state transitions to white space for a more straightforward illustration.

We assume all the note events have the same prior prob-
ability. Now that the pairwise energy does not correlate
to the scale of unary’s, the unary term can be rewritten as
E(xi, ai|ni, X, l).

We train our unary model via linear Support Vector Ma-
chine (SVM) and use Histogram of Gradients (HOG) as the
image feature. We extracted HOG features for both positive
and negative training data and fed these features into the
SVM classifier. A small validation dataset is used during
the training stage in order to tune SVM parameters. We use
the trained model to detect note heads on the test images.

Figure 6 illustrates the graphical model for MIDI-
assisted OMR. We parse MIDI messages into a sequence
of hidden states in our CRF model, and use this generated
graph to infer the optimal MIDI subsequence and align the
notes to image observations. For each subsequence hypoth-
esis the inference will estimate {ni} , x, y and a simultane-
ously. As shown in Figure 6, the hidden layer is a Markov
chain connecting all the notes in the MIDI sequence, the la-
tent attribute layer takes the clef associated with each note,
while the observation layer corresponds to the image data.
Once we perform the whole inference via a Viterbi decoder
on the target staff, we will locate the optimal measure sub-
sequence and determine the optimal parameters of its con-
taining notes at the same time. .

4. Experiment
We initialized a dataset with the first 5 pieces of Bach’s

15 Inventions (No. 1 - 5). The dataset contains 54 egocen-
tric images in total, each including 8 to 12 staves. The data
was acquired from the online music score repository IM-
SLP1. We annotate the staff endpoints and note positions on
each image, and manually align the notes to MIDI events as
the ground truth.

1http://imslp.org/wiki/15_Inventions,_BWV_
772-786_(Bach,_Johann_Sebastian)

Figure 7: Bach Invention in C major (No. 1): Score region
extracted by using the segmentation approach mentioned in
Section 3.1.

Precision Recall F-Score
Staff Detection 86.1% 81.8% 83.9%

Table 2: Precision, Recall and F-score of staff detection.

Our test set contains 242 independent staves. We eval-
uate our staff detection accuracy using the mean squared
error between the endpoint coordinates of ground truth and
estimated staves. We claim a staff is correctly identified if
this error is below a small threshold. Table 2 presents the
evaluation results for staff detection. Figure 7, Figure 8 and
Figure 9 respectively highlights the located score region and
detected staves on Bach Inventions No. 1 - 4, where all the
staves were identified. We have detected 198 true positive
staves in total. We will work on these correctly identified
staves for later evaluations.

We evaluate note detection and MIDI alignment accu-



(a) Staff detection on Bach Invention No. 1 (b) Staff detection on Bach Invention No. 2

Figure 8: Detected staves on Bach Inventions No. 1- 2. Background was removed after score region localization.

racy against two other baselines. The first baseline uses a
greedy approach to align subsequence notes to the observa-
tion. The greedy algorithm also outputs the highest scored
subsequence but adds all the detected note’s likelihood to
the hypothesized subsequence score as long as they don’t
overlap with each other. This approach ignores both the or-
der and distance constraints of notes. The second one uses
the same CRF model but takes off the pairwise distance con-
straints. In contrast, our approach maintains both the spatial
order and constraints.

Figure 10 shows us the experimental results generated by
our CRF model. Mapping MIDI events to note heads occa-
sionally causes problems. For instance, there will be multi-
ple note heads detected for a single trilled note since trill is
represented by several short notes in MIDI. Also, only one
of the tied notes will be recognized since they’re merged
into one single MIDI event.

We define two accuracy measurements to evaluate the
effectiveness of different approaches. Note detection ac-
curacy measures the portion of detected notes matching
the annotated notes at the same locations in the ground
truth, while the MIDI alignment metric examines in ad-
dition whether the matched notes have the same pitches.
We evaluate the accuracy of identified measure subsequence
first and based on these matched subsequences we perform
note detection and MIDI alignment evaluation. From Ta-
ble 3 we see that our approach achieved highest accuracy for
both subsequence matching and MIDI alignment. Greedy
approach tends to detect as many objects as possible, but
lost the musical structure otherwise maintained in the CRF
model. This explains why there is a significant accuracy
decline from its note detection to MIDI alignment. The
two CRF models have comparable F-scores; both are sig-
nificantly higher than that of greedy algorithm. This accu-
racy improvement is gained by incorporating note sequence
structures into the recognition. The note detection rate of

CRF without pairwise constraint is slightly higher than the
pairwise-constrained CRF, while the constrained one out-
performs the other two in the final MIDI alignment evalua-
tion.

5. Conclusion
We presented a optical music recognition approach for

egocentric device. Our main idea is to incorporate offline
symbolic data into a single joint OMR framework. We ex-
tract useful structural information of music symbols from
MIDI data to assist the egocentric music score recogni-
tion. The proposed approach is shown to outperform several
baselines in terms of recognition accuracy.

Our approach provides possibilities to interesting appli-
cations that combines music and egocentric vision. After
the recognition is performed, the locations for staves, mea-
sures and notes will be estimated. The most straightforward
application includes playing back the measures of interest
to the user or rendering pitches and rhythms on the screen
to assist user’s score-reading. Other interactive games can
be devised by using the data generated from the inference.

One limitation of the proposed approach is that the cur-
rent system can hardly achieve real-time request since it
keeps searching over the complete MIDI data for each esti-
mated staff. We need to design heuristics to prune out im-
possible measures to improve the processing speed. An-
other solution is to put the human users into the loop, which
will provide additional information to allow real-time com-
putation. It is also desirable to extend the algorithm to pro-
cess continuous video stream so that we can track the staves
and note heads more smoothly and accurately. We leave
these interesting challenges as future work.



(a) Staff detection on Bach Invention No. 3 (b) Staff detection on Bach Invention in No. 4

Figure 9: Detected staves on Bach Inventions No. 3 - 4. Background was removed after score region localization.

Note Detection MIDI Alignment
Method Measure Subsequence Accuracy Precision Recall F-Score Precision Recall F-Score
Greedy 14.1% 42.7% 82.6% 56.3% 27.0% 47.7% 34.5%
CRF 53.0% 85.3% 77.2% 81.0% 65.1% 67.1% 66.0%
CRF + Pairwise Constraint 54.0% 80.9% 78.6% 79.7% 68.7% 65.2% 66.9%

Table 3: Evaluation on the measure subsequence, note detection and MIDI alignment accuracy for (1) greedy algorithm, (2)
CRF without pairwise constraint, (3) proposed model.

(a) All the notes were correctly identified on Bach Invention No. 5, the 7th staff.

(b) All the notes were correctly identified on Bach Invention No. 1, the 1st staff. Extra notes were detected due to trills.

(c) Clef change was correctly identified on Bach Invention No. 1, the 6th staff.



(d) Example of low-level detection error on Bach Invention No. 2, the 13rd staff.

(e) Example of low-level detection error on Bach Invention No. 2, the 18th staff.

(f) Example of low-level detection error on Bach Invention No. 3, the 2nd staff. An extra measure was detected at the end.

(g) Example of high-level detection error on Bach Invention No. 2, the 15th staff.

(h) Example of high-level detection error on Bach Invention No. 1, the 9th staff. The last measure was mis-aligned.

Figure 10: MIDI alignment results. Red: note locations; Blue: pitch names; Green: associated clef.
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