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Abstract

In this paper, we propose a new approach for the person
re-identification problem, discovering the correct matches
for a query pedestrian image from a set of gallery images.
It is well motivated by our observation that the overall com-
plex inter-camera transformation, caused by the change of
camera viewpoints, person poses and view illuminations,
can be effectively modelled by a combination of many sim-
ple local transforms, which guides us to learn a set of more
specific local metrics other than a fixed metric working on
the feature vector of a whole image. Given training images
in pair, we first align the local patches using spatially con-
strained dense matching. Then, we use a decision tree struc-
ture to partition the space of the aligned local patch-pairs
into different configurations according to the similarity of
the local cross-view transforms. Finally, a local metric ker-
nel is learned for each configuration at the tree leaf nodes in
a linear regression manner. The pairwise distance between
a query image and a gallery image is summarized based on
all the pairwise distance of local patches measured by dif-
ferent local metric kernels. Multiple decision trees form the
proposed random kernel forest, which always discrimina-
tively assign the optimal local metric kernel to the local im-
age patches in re-identification. Experimental results over
the public benchmarks demonstrate the effectiveness of our
approach for achieving very competitive performances with
a relatively simpler learning scheme.

1. Introduction
Person re-identification is to recognize the same person

across a network of cameras with non-overlapping views.
It is important for video surveillance by saving a lot of hu-
man effort on exhaustively searching for a person from large
amounts of video sequences, e.g., the large scale pedestrian
retrieval [28] and the wide scale multi-camera tracking [41].
However, this is also a fairly challenging problem since the
appearance of the same person may vary greatly in differ-
ent camera views, due to the significant variations in cam-
era viewpoints, illuminations, person poses, occlusions and
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Figure 1. Samples of pedestrian images observed in different cam-
era views in person re-identification. Each pedestrian has a differ-
ent pose variation in the four examples between two cameras.

backgrounds, etc. In addition, a surveillance camera usu-
ally observes hundreds of people in one day, many of which
have similar appearances, therefore generating a lot of false
alarms for the query image. See Figure 1 for some typical
difficult examples.

In literature, two lines of approaches have been proposed
to tackle this problem. The first line concentrated on the de-
velopment of viewpoint quasi-invariant local features, e.g.,
color [11], texture [44] or gradient [47], as well as robust
feature ensembles. However, these feature based methods
still suffer from illumination changes, human shape defor-
mations and difficulty of multi-feature ensembles. The sec-
ond line is to learn a parametric distance metric to enforce
features from the same individual to be closer than that from
different individuals [22, 36, 44], also known as the met-
ric learning (ML). However, ML usually deals with feature
vectors of a complete image in learning of the metric. Al-
though effective, this distance metric may not be the optimal
to work well on certain local parts of each person image.

In the re-identification problem, image regions typically
undergo both geometric transformation due to camera view-
point changes and photometric transformation due to illu-
mination variations. However, different regions suffer dif-
ferently to these two transformations, e.g., the smooth pure
color regions suffer less while the texture or high gradient
patches suffer more. In addition, the pose changes from one
camera to another vary for different people, there is no fixed



pattern, e.g., 45◦ → 90◦ or 0◦ → 45◦, to describe the di-
verse pose changes, shown as in Figure 1. Therefore, the
configuration of person images are multi-modal even if the
people are observed in the same camera view. To fully for-
mulate the overall inter-camera transformation F , it must
be a sophisticated non-linear function with a large number
of unknown parameters. Obviously, single transform or uni-
modal metric function might not be the optimal to tackle the
problem. Thus some of the recent works used kernel tricks
applying ML in a non-linear kernel space [44, 3] or adopted
nested formulations as in deep learning framework [1, 42],
which is usually time-consuming in model training.

Our work is mainly motivated by the above observations.
Suppose a specific metric can be learned from a small group
of local image patch-pairs that share a consistent cross-view
transform, not only the metric learning task becomes much
easier, the combination of these specific metrics is also more
effective to further ensure the pairwise distances of images
from the same individual can be better minimized. Compar-
ing to the deep learning architectures [1, 20], which approx-
imates the overall transformation F as a series of nested
functions with the distance metric defined as D(x,y) =
dK (...d2 (d1(x,y))), where x,y are the representations of
two images from two different camera views, respectively,
we try to partition out all the local transforms and decom-
pose the overall transformation F into many independent
sub-functions fk, then our new distance metric is defined
as D(x,y) =

∑
x,y{d1(x, y) + d2(x, y) + ...+ dK(x, y)},

where x, y are features of local patches from the image pair
x,y, respectively, i.e., some segments of the concatenated
feature vectors x,y. However, each dk only works on a
specific kind of the local patches from each image.

The main purpose of this paper is to learn specific metric
kernels for different local image patches in measure of the
pairwise distance. We propose a novel random kernel for-
est (RKF) based on the consistent patch-to-patch transform
criteria for person re-identification. Our main contribution
is the use of a highly efficient decision forest that is trained
to discriminatively predict which kernel should be applied
to measure the pairwise distance of any two given image
patches. As shown in Figure 2, the tree structure jointly
partitions the space of local patch-pairs from all the training
image pairs into a set of sub-spaces at each tree leaf, where
the transform of the local patches between cameras is sim-
plified and consistent. Furthermore, a simple linear kernel
can be learned at each leaf to describe the specific transform
fk,k=1,...,K, such that the distance between any true patch-
pair will be minimized in dk. Combining with multiple de-
cision trees in the forest, the model also effectively avoids
over-fitting during training. Finally, since the decision tree
recursively and jointly partitions the patch-pair space solely
based on the thresholds on features, it is very fast in learn-
ing and prediction. Extensive experimental results demon-

strate the effectiveness of our approach for achieving very
competitive performance while adopting a relatively simple
learning scheme.

2. Related Work
The existing person re-identification approaches can be

broadly grouped into two categories: robust feature extrac-
tion and distance metric learning.

The existing works on feature design and selection can
be further divided into unsupervised and supervised ver-
sions. Unsupervised approaches search for view invariant
features via perceptual symmetry or certain prior assump-
tions [25, 2, 29, 30]. For example, Farenzena et al. [10]
proposed the accumulation of local features by exploiting
the symmetry property. Zhao et al. [47, 46] proposed a
salience model for patches matching such that the reliable
and discriminative matched patches can be identified for
better performance. Liao et al. [23] proposed to maximize
the occurrence of each local pattern among all the horizontal
sub-windows to tackle the viewpoint changes. Supervised
approaches select the most effective features by certain cri-
teria [11, 31]. For example, Prosser et al. [37] formulated
person re-identification as a ranking problem, and learned
global feature weights based on an ensemble of RankSVM.
Paisitkriangkrai et al. [35] improved the feature ensemble
performance by learning the weights based on cumulated
matching characteristics curve. Recently, Wu et al. [43]
proposed an appearance model integrating the camera view-
points and human pose information.

In contrast, the approaches that focus on metric learn-
ing usually extract image features in a more straightfor-
ward manner, e.g., color or texture histograms from pre-
defined image regions. A lot of metric learning algorithms
have been proposed recently [50, 16, 32, 44]. For example,
Mahalanobis (M-distance) learning has been proposed for
re-identification problem [14, 34], as M-distance can im-
plicitly model the transition in feature space between two
camera views. Pedagadi et al. [36] applied FDA (fisher
discriminant analysis) together with PCA and LPP (local-
ity preserving projections) to derive a low-dimensional yet
discriminant subspace. Li et al. [22] developed a locally-
adaptive decision function (LADF) that jointly models a
distance metric and a locally adaptive thresholding rule to
achieve good performance. Dictionary learning [26, 15, 40]
is also proposed to bridge the appearance across two cam-
eras with the assumption that the manifold of local patches
in spaces of two camera views are similar. Recently, Chen
et al. [3] proposed an explicit polynomial kernel approach
that learns a similarity function to maximize the difference
between the similarity score of true and false image pairs.

Other than these two main research lines, some other in-
teresting and novel approaches have also been proposed for
the re-identification problem. For example, the deep learn-
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Figure 2. Illustration of the main idea. Left: learning phase, the aligned patch pairs of the same person from different cameras are separated
in a tree structure based on the consistent patch-to-patch transform criteria. At each tree leaf, a simple but effective kernel is learned to
describe the simplified transform. Right: testing phase, given a probe image, a suitable kernel will be selected based on the decision tree
for each of its local image patch. With the optimal local kernel, the distance between the true patch pairs will be well minimized.

ing framework was applied to exploit the information of the
cross-input difference features by multiple layers of the neu-
ral network [20, 45, 1]. The mid-level features, e.g., filters
and semantic attributes [18, 8], were also explored. Zhao
et al. [48] proposed to learn mid-level filters by mining the
cross-view invariance in subsets of local patch features. Shi
et al. [39] proposed a new approach for learning a semantic
attribute model from existing fashion datasets, and adapted
the resultant model to facilitate person re-identification.

If viewed from the perspective of motivation, our work
is most close to the LAFT approach [19], which jointly par-
titions the image spaces of two camera views into different
subspaces according to the similarity of inter-camera trans-
forms. However, the main difference between our works
are that: (i) LAFT partitions the image space of each cam-
era view instead of the more fine local patches space, where
the problem of local regions suffering from different trans-
forms can be better tackled; (ii) LAFT uses a gating net-
work to softly assign the given image pair to a configuration
type and requires feature selection with sparsity and log-
determinant divergence regularization. In contrast, we as-
sign the optimal kernel to the given local patch much more
efficiently in the tree structure and do not require post fea-
ture selection. If viewed from the perspective of methodol-
ogy, our work is also relevant with [47, 21]. Though [47]
also plays with local patches, it assumes the salient parts on
each person appearance can be captured by different cam-
eras. [21] also uses random forest, which however was used
as a traditional classifier to recognize two image features are
from the same person or not. In contrast, the random for-
est in our work is utilized to discover different patch-level
inter-camera transforms in a tree structure.

3. Method

Random forests [6] is a well-known decision tree based
classifier ensemble. It has been widely used in many com-
puter vision problems recently, such as image denoising [9],
edge detection [7], image classification [38], human pose
estimation [17], etc. In our work, random forest has been
strategically designed to decompose the multi-modal inter-
camera transformation into multiple simple and indepen-
dent uni-modal transforms.

3.1. Model

Traditional machine learning problems try to learn a cat-
egory specific probability distribution or a decision bound-
ary to answer which category a given sample belongs to.
In contrast, the person re-identification problem deals with
image pairs and tries to determine whether a pair of sam-
ples are from the same category or not. Formally, for a pair
of image samples represented by x,y ∈ Rd, respectively,
each of which corresponds to a class label C(x) and C(y),
we need to decide whether they are from the same category,
i.e., C(x) = C(y), or not. The ability of dealing with un-
seen categories is the key for person re-identification, since
most of the testing samples are from unseen persons which
do not exist in the training set. The proposed approach still
follows the distance metric learning framework. Given a set
ofN training pedestrian image pairs X = {x1,x2, ...,xN},
Y = {y1,y2, ...,yN}, which are observed by two disjoint
camera X (camX ) and camera Y (camY), our goal is to
learn a distance metric D(xi,yi) that any pair of two sam-
ples from the same person generates the smallest distance.

Mathematically, the gist of metric learning is to learn a



projection P and find a common subspace to measure the
pairwise distance, e.g., ||Px − Py||2 = (x − y)>P> ·
P(x−y) = (x−y)>W(x−y), where W is a semi-definite
matrix. However, as explained in §1, the complex transfor-
mation between camX and camY is multi-modal, hence it
cannot be well learned with a single fixed metric W. In
our work, we learn a more comprehensive overall mapping
function FM : X → Y which is parameterized by M =
{m1,m2, ...,mK}, where each mk represents a simple lo-
cal transform that learned from a small set of automatically
selected local patch-pairs in group Gk = {(xi, yi)ni=1,2,...}
from the training set of image pairs {X,Y}, where i is the
subscript of each local patch in group Gk,k=1,2,...,K and n
denotes which image it comes from. Hereinafter, each in-
dependent local transform fk parameterized by kernel mk

is denoted as fmk
. Learning such a kernel mk is generally

formulated using the empirical risk minimization:

m∗k = argmin
mk

1

|Gk|
∑
i∈Gk

L(yi, fmk
(xi)) (1)

Please note that each small groupGk is discovered automat-
ically, we will illustrate how to partition the space of aligned
local patch-pairs into different sub-spaces and get the re-
sultant groups Gk in the next subsection via the decision
tree structure. In this work, each fmk

is defined as a linear
mapping function describing the decomposed uni-modal lo-
cal transform. The loss function L is simply defined as
(yi−mkxi), and mk is just a linear mapping kernel that can
be efficiently solved in closed form as ŷx̂>(x̂x̂> + λI)−1,
where λ is a regularizing parameter being small value, and
x̂ = [x1, x2, ..., xi, ..]xi∈Gk

and ŷ = [y1, y2, ..., yi, ..]yi∈Gk
.

Finally, the overall inter-camera transformation from X to
Y can be formulated as FM =

∑K
1 fmk

, with each of the
fmk

representing one uni-modal transform that works on
certain specific kind of image local patches.

Finally, our local distance metric is defined as dk(xi, yj)
= ||yj − fmk

(xi)||2, where the optimal kernel mk for each
image patch xi is automatically and discirminatively as-
signed by the tree structure. Then, the overall distance met-
ric is defined as:

D(x,y) = ||y −F(x)||2
=
∑

r,c ||y[r,c] −
1
Q

∑
q f

q
mk

(x[r′,c′])||2
(2)

where the subscript [r, c] denotes the coordinates of each
local patch in images x,y. Notice that the x,y are nor-
malized images of pedestrian appearance cropped out from
surveillance data. We use a greedy distance measure, which
will be detailed in §3.3, to compute the pairwise patches
distance, thus the [r, c] in y and [r′, c′] in x do not have to
be identical. As to be introduced in §3.2, we formulate the
uni-modal transform fmk

(x)Q times in Q decision trees to
avoid over-fitting, the final output thus is a mean value of
the Q predictions.

3.2. Random Kernel Forest

A forest is an ensemble ofQ decision trees Tq [6]. Given
a sample x, the prediction of Tq(x) from each tree is com-
bined using an ensemble model, e.g., an average value, into
a single output. Each decision tree consists of non-terminal
(split) and terminal (leaf) nodes. A tree Tq classifies a sam-
ple x ∈ X by recursively branching left or right child node
down the tree structure until reaching a leaf node. Each non-
terminal node z in the tree is associated with a binary split
function h with parameters θz:

h(φ(x), θz) =

{
0 for φ(x) < τz
1 for φ(x) ≥ τz

(3)

Then, sample x will be sent to left if h(φ(x), θz) = 0, oth-
erwise, right. The split function h(φ(x), θz) can be arbi-
trarily complex, but a typical choice is just a threshold that
a single entry on the feature vector x is compared to, e.g.,
θz = (kz, τz), then h(φ(x), θz) = [x(kz) < τz], where [·]
is an indicator function, φ(x) = x, and x(kz) is the kz-th
entry on the feature vector x. Other than setting φ(x) = x,
the function φ(x) also can be of other forms, for example,
we use the “pairwise” difference of two entries on the fea-
ture vector x, i.e., φ(x) = x(k1) − x(k2). Both the two
entries k1, k2 are randomly selected from feature vector x.

Suppose the training set, i.e. the aligned local patch-pairs
S = {(xi, yi)n=1,...,N

i=1,... }, are extracted from the training im-
age pairs X = {x1,x2, ...,xN} and Y = {y1,y2, ...,yN}.
Training of the decision tree for joint spaces partition in-
volves searching for the parameter θz of each split function
h(φ(x), θz), which can well split the training data to maxi-
mize an objective function, i.e., information gain.

Iz = I(Sz,SLz ,SRz ) = E(Sz)−
∑

v∈L,R

|Svz |
|Sz|

E(Svz ) (4)

where SLz = {(x, y) ∈ Sz|h(φ(x), θz) = 0}, SRz =
Sz \SLz , and the termE is an index function. Then, learning
of the parameter θz is guided as to maximize Iz . The same
learning will be executed on each non-terminal nodes recur-
sively until it reaches a leaf node or the gain falls below a
threshold.

For typical classification problems, the termE is defined
as the Shannon entropy, i.e., E(S) = −

∑
c sc log(sc),

where sc is the fraction of elements in S with label c [6, 7].
In contrast, the index function E of our task is defined as
the regression error ||ŷz −mz x̂z||2. Therefore, training for
classification tasks partitions training samples into succes-
sive homogeneous sub-clusters, while training for our task
jointly partitions the local patch-pairs from two spaces into
successive sub-spaces where their inter-camera transforms
become consistent and easier to formulate, layer by layer
in the tree structure. Finally, we are able to define our local



metric at each leaf node with a specific kernel, and the com-
bination of those local kernels can approximate any compli-
cated multi-modal inter-camera transformations.

3.3. Patch Features and Alignment

Features of local patches: features of local patches on
an overlapping dense grid are extracted, as shown in Fig-
ure 2. The features used for patch representation include:
10-bin color histogram extracted from each of the 3 chan-
nels of HSV color space and each of the 3 channels of LAB
color space, 9-bin gradient histogram extracted from the in-
tensity space, and 59-bin LBP features also extracted from
the intensity space. The 8 channels of features are finally
concatenated to form a final 128-dimensional feature vector
for each local patch.

Constrained patches alignment: Suppose the images
xn,yn of person appearance are cropped out [13] and nor-
malized from surveillance data in advance. In each image
xn, the appearance of human body is usually segmented
into several horizontal stripes [36, 47] to incorporate cer-
tain spatial constraint in patches matching and alignment.
The feature of a local patch is denoted as {xnr,c}, indicat-
ing it’s from the r-th row and c-th column on the dense
grid. Since the two images from camX and camY might
be taken with different viewpoints, as shown in Figure 1,
we need to roughly align the local patches in measure of
the distance between the two images x and y. Therefore,
when a local patch {xnr,c} is matched to a corresponding
one in the image yu : {yur,c}, its search is constrained to
the set of {yu[r−1,r+1],c=1,...,C}. With searching in a small
range [r− 1, r+1], we can relieve the neg-effect in patches
matching caused by the vertical misalignment. We perform
the patches matching in a greedy way, in both the extrac-
tion of training patch-pairs and the testing of images re-
identification. Each patch xnr,c is matched to its nearest
neighbor in its searching set {yu[r−1,r+1],c=1,...,C}, then the
corresponding one in the set will be removed in next itera-
tion, as shown above in Figure 3. Finally, each local patch in
image xn is aligned to a unique one in image yu. Then, the
distance between the two images is the summation of all the
pairwise distance of each two local patches from xn, yu, as
in Eq. 2. The retrieved image in gallery for the query image
is the one gives the smallest distance value D(xn,yu).

3.4. Implementation Details

Training of the decision tree plays the main role in learn-
ing of the overall inter-camera transformation F . Ran-
dom forest prevents over-fitting by training multiple de-
correlated trees and combining their outputs. To achieve
sufficient diversity of trees, we trained 20 trees in the forest.
To learn the parameter θz at each non-terminal node z in
training of each tree, we randomly sub-sample 1024 patch-
pairs, 20 pairs of the entry on the feature vector and take

patch P_Y1 P_Y2 P_Y3 P_Y4 P_Y5 P_Y6

P_X1 0.81 0.28 0.96 0.79 0.68 0.71

P_X2 0.91 0.55 0.49 0.96 0.76 0.03

P_X3 0.13 0.96 0.80 0.66 0.74 0.28

P_X4 0.91 0.97 0.14 0.02 0.39 0.05

P_X5 0.63 0.16 0.42 0.85 0.65 0.09

P_X6 0.08 0.97 0.92 0.03 0.17 0.77

P_X4~ P_Y4

P_X2 ~ P_Y6

P_X3 ~ P_Y1

…
 …

Aligned Patches

Figure 3. Illustration of the greedy local patches matching via pair-
wise distance. Suppose 6×2 patches are doing matching from two
vertical strips of x,y, the sequence of the matched patches in this
example are denoted as in color yellow, orange and green ... .

Probe Set Gallery SetVIPeR

Probe Set Gallery SetGRID
Distracting Images

Probe Set Gallery SetCUHK01

Figure 4. Examplar image pairs in probe set and gallery set from
datasets of VIPeR (top), GRID, CUHK01(bottom), respectively.

10 random guesses for the threshold τz . The decision tree
terminates split and creates a leaf once the number of patch
pairs is less than 128.

4. Experimental Results
4.1. Datasets and Protocols

We conduct experiments on three most frequently used
datasets: the “viewpoint invariant pedestrian recognition”
(VIPeR) [11], “QMUL underround re-identification datas-
et” (GRID) [28] and the “CUHK person re-identification
dataset” (CUHK01) [20]. All three datasets are very chal-
lenging for re-id problems due to the significant variations
in viewpoints, poses, illuminations, and also their low im-
age resolutions with occlusions and different backgrounds.

VIPeR: it contains 632 pedestrian image pairs that cap-
tured by two hand-carried cameras in outdoor environment.
All the images are scaled to the same size of 128 × 48 for
evaluation. Each pair contains two images of the same per-



son observed from two camera views with pose changes
(mostly > 90o degree) and different lighting conditions.

GRID: it contains 250 pedestrian image pairs that cap-
tured from 8 disjoint camera views installed in a busy under-
ground station. All the images are scaled to the same size
of 300× 100 for evaluation. Each pair contains two images
of the same individual seen from different camera views.
Except for the common challenges (pose changes, etc.), the
gallery set also contains 775 distracting images which do
not match any person in the probe set, bringing much more
difficulty in re-identification for a probe (query) image.

CUHK01: this is a multi-shot dataset containing 971
pedestrians captured from two disjoint camera views, with
2 images per person in each view. All the images are scaled
to the same size of 160 × 60. Since it contains much more
instances, it has been used for evaluation of deep learning
approaches.

Protocols: The pedestrians in each dataset are separated
into the training set and the testing set, such that each per-
son appears only once in either the training set or the test-
ing set. The testing set is also partitioned into two sets: the
probe set and the gallery set. For the VIPeR dataset, the
images in camera A are used as probe images, and the im-
ages in camera B are used as gallery images. The GRID
dataset already defined the probe set and the gallery set,
with 775 distracting images added in the gallery set. For
the CUHK01 dataset, the first 2 images of each person are
used as probe images and the latter 2 images from another
view are stored in the gallery set. According to the existing
works in literature, the performances are reported quantita-
tively as the standard Cumulated Matching Characteristics
(CMC) curves, and the performance is the averaged results
of 10 trials. In CMC curves, the Rank-κmatching rate is the
rate of correct match at rank κ, and the cumulated values of
recognition rate at all ranks are recorded as the CMC curve.
The parameters in learning of the random kernel forest are
illustrated in §3.4. For dense local patches sampling of the
images in each dataset, 15× 5, 24× 8, 19× 6 overlapping
local patches are extracted in VIPeR, GRID, CUHK01, re-
spectively.

4.2. Empirical Analysis

We investigate how some of the terms in our random ker-
nel forest influence the final re-identification performance.
All the analysis and evaluations in this sub-section are based
on the VIPeR dataset.

Effect of local kernels: The distance between the query
image and each gallery image is the summation of all the
pairwise distances of local patches. To tell which local re-
gions contribute the most to discriminate the correct match
in the gallery set, we show the similarity distribution of one
example image pair in left of Figure 5, from which we can
find that these discriminative regions mostly focus on hu-
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Figure 5. Left-4: similarity distribution of local regions in match-
ing. Right-2: spatial distribution of 127 local kernels in an exam-
ple image.

man body parts. In addition, we also show the spatial distri-
butions of the local kernels on one example image in right
of Figure 5, which also demonstrates our hypothesis that
the inter-camera transforms at different local regions indeed
vary accordingly.

Forest diversity: The diversity of trees in the kernel for-
est is crucial in traditional random forest classifiers. In fact,
the accuracy of each single tree is sacrificed in favor of a
highly diverse ensemble. Therefore, we vary the number of
trees Q in forest and check their influence on the final re-
id performance. As shown by the results in Figure 6 (a), a
larger number of trees produced higher re-id performance.
However, once the number of trees is large enough, the per-
formance becomes stable. Based on the empirical study, we
choose the number of trees in our forest as 20, which is rel-
atively small while producing good performance.

Partition of images space and patch-pairs space: As
discussed in §2, based on similar motivation that finding a
subspace where the cross-view data pair inside have con-
sistent transform, the LAFT [19] partitions the image space
while ours partition the more fine local patch space. We thus
conduct two tests for evaluation based on the VIPeR dataset,
one uses 316 persons in training set (316 gallery images in
test) and the other uses only 100 persons in training, result-
ing in 532 gallery images in test. The performance compar-
ison between the two approaches are shown in Figure 6 (b).
We can observe that in the first test, our approach performs
better in the range of a small κ (rank 2-15), while in the sec-
ond more challenging test with much less training samples
and a larger gallery set, our performance is obviously much
better than the LAFT approach.

4.3. Quantitative Evaluation

In this subsection, we compare our approach to the other
existing works on several standard datasets for evaluation.

VIPeR: two protocals were defined for evaluation on this
dataset: the first one randomly selects 316 persons to form
the training set and results in 316 persons in testing set; the
other one randomly selects 100 persons to form the training
set and results in 532 persons in test. Our approach is com-
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Figure 6. Evaluations: (a) Performance comparison of different numbers of trees in random kernel forest. (b) Comparison between RKF
and LAFT via CMC curves. (c) CMC curves on VIPeR dataset with 316 gallery images. (d) CMC curves on VIPeR dataset with 532
gallery images. (e) CMC curves on GRID dataset with 900 gallery images. (f) CMC curves on CUHK01 dataset with 100 gallery images.

Method κ = 1 κ = 5 κ = 10 κ = 20 ref
SSCDL 25.6 53.7 68.1 83.6 CVPR14 [26]
SalMat 26.7 50.7 62.4 76.4 CVPR13 [47]
IRS 27.0 49.4 61.1 72.8 PAMI15 [24]
RPLM 27.3 54.5 68.8 82.4 ECCV12 [14]
mFilter 29.1 52.3 66.0 79.9 CVPR14 [48]
QALF 30.2 51.6 62.4 73.8 CVPR15 [49]
LADF 30.5 61.2 76.2 88.2 CVPR13 [22]
Ours 29.1 59.2 74.4 83.8

Table 1. Top ranked matching rates (%) on VIPeR dataset with 316
gallery images (highest 3 are colored as red, blue and magenta ).

pared to the other existing works including: SDALF [10],
LF [36], SSCDL [26], SalMat [47], IRS [24], RPLM [14],
mFilter [48], QALF [49], LADF [22], PCCA [34], MtM-
CML [32], MFA [44], LAFT [19], kLFDA [44], ReML [5].
The performance comparison is shown in Figure 6 (c) and
(d) by CMC curves. From these results, we can find that our
approach gives the second best performance in the first test
and the best performance in the second test. We also sum-
marize the performance comparison in Tables 1&2 to show
the matching rate values more straightforwardly. It is clear
that our approach achieves 29.1% and 16.0% rank-1 match-
ing rate in the two tests, which is very competitive compared
to the other results in literature. The rank-20 matching rate
for our approach is 83.8% and 67.4% in the two tests, which

Method κ = 1 κ = 5 κ = 10 κ = 20 ref
PCCA 9.3 24.9 37.4 52.9 CVPR12 [34]
RPLM 10.9 26.7 37.7 51.6 ECCV12 [14]
MtMCML 12.3 31.6 45.1 61.1 TIP14 [32]
MFA 12.4 33.3 47.2 63.5 ECCV14 [44]
LAFT 12.9 30.3 42.7 58.0 CVPR13 [19]
kLFDA 13.1 35.2 49.4 65.0 ECCV14 [44]
ReML 17.5 37.9 51.8 66.0 TIP15 [5]
Ours 16.0 39.5 53.3 67.4

Table 2. Top ranked matching rates (%) on VIPeR dataset with 532
gallery images (highest 3 are colored as red, blue and magenta ).

also outperform most of the other methods.
GRID: experiments on this dataset were conducted ac-

cording to the 10 data partitions provided along with the
dataset. In each partition, the image pairs from 125 ran-
domly selected individuals are used for training, and the
rest 125 persons together with the 775 irrelevant distracting
images form the gallery set in test. Our approach is com-
pared to some recently published results by: PRDC [50],
RankSVM [37], MrankPRDC [27], MrankSVM [27],
LCRML [4], XQDA [23] in Figure 6 (e) and Table 3. The
CMC curves and top rank matching rates show our ap-
proach achieves very competitive results on this benchmark.

CUHK01: this multi-shot dataset contains 971 persons.
100 persons are randomly selected in test, and the rest 871



Method κ = 1 κ = 5 κ = 10 κ = 20 ref
PRDC 9.7 22.0 33.0 44.3 CVPR11 [50]
RankSVM 10.2 24.6 33.3 43.7 BMVC10 [37]
MrankPRDC 11.1 26.1 35.8 46.6 ICIP13 [27]
MrankSVM 12.2 27.8 36.3 46.6 ICIP13 [27]
LCRML 10.7 25.8 35.0 46.5 ICPR14 [4]
XQDA 10.5 28.1 38.6 52.6 CVPR15 [23]
Ours 12.5 29.2 38.3 50.3

Table 3. Top ranked matching rates (%) on GRID dataset with 900
gallery images (highest 3 are colored as red, blue and magenta ).

Method κ = 1 κ = 5 κ = 10 κ = 20 ref
SDALF 9.9 41.5 54.7 66.0 CVPR10 [10]
Rank 20.6 47.6 61.6 76.5 ICML10 [33]
eSDC 22.8 43.0 55.3 69.7 CVPR13 [47]
LDM 26.5 57.6 72.6 85.5 ICCV09 [12]
FPNN 27.9 59.7 73.4 87.3 CVPR14 [20]
KISSME 29.4 59.8 74.5 86.6 CVPR12 [16]
Ours 44.0 78.5 86.7 94.0

Table 4. Top ranked matching rates (%) on CUHK01 with 100
gallery images (highest 3 are colored as red, blue and magenta ).

persons are used for training. This protocol was designed
for deep learning in FPNN [20]. Figure 6 (f) and Table 4
compares the performance of our approach to the other ex-
isting works including FPNN, eSDC [47], KISSME [16],
LDM [12] etc. The results show that our approach outper-
forms the other existing works by a large margin (> 15%
than FPNN), with the rank-1 matching rate being 44%. In
summary, all the above results also show that our approach
is able to achieve competitive performance without the strict
requirements on training data as in deep learning.

As for the efficiency of the proposed approach, the time
cost to discover local transforms in training of the random
forest with 20 trees is ≈ 18-min on the VIPER dataset with
316 training persons. The testing time for a query image is
< 3-sec with 316 gallery persons. Time costs are measured
in Matlab on a laptop with i7 2.7G CPU.

5. Conclusion

This paper presented a novel approach based on the ran-
dom kernel forest for person re-identification across disjoint
camera views with complicated appearance variations. The
complex inter-camera transformation is modelled by a com-
bination of many local functions, which formulate each lo-
cal transform in a much simpler but effective manner. Both
the decomposition of the overall inter-camera transforma-
tion and the local metric kernels for re-identification are dis-
covered automatically by the aligned local training patch-
pairs using the random forest framework. Any local patch
in a query image is assigned a specific kernel in the tree
structure, then the local metric is able to generate a mini-
mized distance between the true patch-pairs. Extensive ex-

perimental results showed that the proposed random ker-
nel forest achieved very competitive re-identification per-
formance as compared to the other existing works.
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